Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T08:06:29.058Z Has data issue: false hasContentIssue false

X-ray device for continuous in situ electrochemical study of plastic Li-ion cells

Published online by Cambridge University Press:  10 January 2013

B. Gérand*
Affiliation:
Laboratoire de Réactivité et de Chimie des Solides, ESA CNRS 6007, Université de Picardie Jules Verne, 33, rue Saint Leu, 80039 Amiens Cedex, France
A. Blyr
Affiliation:
Laboratoire de Réactivité et de Chimie des Solides, ESA CNRS 6007, Université de Picardie Jules Verne, 33, rue Saint Leu, 80039 Amiens Cedex, France
A. Du Pasquier
Affiliation:
Laboratoire de Réactivité et de Chimie des Solides, ESA CNRS 6007, Université de Picardie Jules Verne, 33, rue Saint Leu, 80039 Amiens Cedex, France
L. Seguin
Affiliation:
Laboratoire de Réactivité et de Chimie des Solides, ESA CNRS 6007, Université de Picardie Jules Verne, 33, rue Saint Leu, 80039 Amiens Cedex, France
*
a)To whom correspondence should be addressed; Electronic-mail: bernard.gerand@u-picardie.fr

Abstract

The device developed here for XRD analysis is built on a Guinier–Lenné geometry camera. A monochromatized and focused beam goes through the plastic Li-ion cell protected by a metal–plastic laminate. Each layer of the cell produces diffracted beams that are collected by an X-ray film on the focus circle. The film is continuously moved up (1–2 mm/h) while the Li-ion cell is charged and discharged, and controlled by means of the Mac-pile system. This system allows the control of intercalation rate either in potentiostatic mode or in galvanostatic mode (Mac Pile, Bio-Logic SA, Claix, France). The crystallographic behavior of both plastic electrodes can be simultaneously and continuously observed under the real conditions of a commercial battery. LixNiO2 and C graphite as positive and negative electrodes are given as an example, respectively. Structural and chemical parameters evolving from the two electrodes can easily be correlated with the cycling curves. Studies can also be performed from room temperature up to 100 °C.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dahn, J., Py, M. A., and Hearing, R. R. (1982). “In situ X-ray diffraction experiments on lithium intercalation compounds,” Can. J. Phys. 60, 307.CrossRefGoogle Scholar
Gérand, B. and Seguin, L. (to be published).Google Scholar
Gustafsson, T., Thomas, J. O., Koksbang, R., and Farrington, G. C. (1992). “The polymer battery as an environment for in situ X-ray diffraction studies of solid state electrochemical processes,” Electrochim. Acta 37, 1639.CrossRefGoogle Scholar
Lampe-Önnerud, C., Gustafsson, T., and Thomas, J. O. (1993). “In situ X-ray diffraction studies of Li + insertion into V 6O 13,” Mater. Res. Soc. Symp. Proc. 293.Google Scholar