Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T21:51:31.119Z Has data issue: false hasContentIssue false

Temperature-dependent structural behaviour of samarium cobalt oxide

Published online by Cambridge University Press:  22 August 2017

Matthew R. Rowles*
Affiliation:
Fuels and Energy Technology Institute, Curtin University, GPO Box U1987, Perth WA 6185, Australia
Cheng-Cheng Wang
Affiliation:
Fuels and Energy Technology Institute, Curtin University, GPO Box U1987, Perth WA 6185, Australia
Kongfa Chen
Affiliation:
Fuels and Energy Technology Institute, Curtin University, GPO Box U1987, Perth WA 6185, Australia
Na Li
Affiliation:
Fuels and Energy Technology Institute, Curtin University, GPO Box U1987, Perth WA 6185, Australia College of Science, Heilongjiang University of Science and Technology, Harbin 150022, China
Shuai He
Affiliation:
Fuels and Energy Technology Institute, Curtin University, GPO Box U1987, Perth WA 6185, Australia
San-Ping Jiang
Affiliation:
Fuels and Energy Technology Institute, Curtin University, GPO Box U1987, Perth WA 6185, Australia
*
a)Author to whom correspondence should be addressed. Electronic mail: matthew.rowles@curtin.edu.au

Abstract

The crystal structure and thermal expansion of the perovskite samarium cobalt oxide (SmCoO3) have been determined over the temperature range 295–1245 K by Rietveld analysis of X-ray powder diffraction data. Polycrystalline samples were prepared by a sol–gel synthesis route followed by high-temperature calcination in air. SmCoO3 is orthorhombic (Pnma) at all temperatures and is isostructural with GdFeO3. The structure was refined as a distortion mode of a parent $ Pm{\bar 3}m $ structure. The thermal expansion was found to be non-linear and anisotropic, with maximum average linear thermal expansion coefficients of 34.0(3) × 10−6, 24.05(17) × 10−6, and 24.10(18) × 10−6 K−1 along the a-, b-, and c-axes, respectively, between 814 and 875 K.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brett, D. J., Atkinson, A., Brandon, N. P., and Skinner, S. J. (2008). “Intermediate temperature solid oxide fuel cells,” Chem. Soc. Rev. 37(8), 15681578.Google Scholar
Bruker AXS (2014). Topas. Ver. 5.Google Scholar
Campbell, B. J., Stokes, H. T., Tanner, D. E., and Hatch, D. M. (2006). “Isodisplace: a web-based tool for exploring structural Distortions,” J. Appl. Crystallogr. 39(4), 607614.CrossRefGoogle Scholar
Chartrand, R. (2011). “Numerical differentiation of noisy, nonsmooth data,” ISRN Appl. Math. 2011, 164564.CrossRefGoogle Scholar
Chen, K., Li, N., Ai, N., Cheng, Y., Rickard, W. D., and Jiang, S. P. (2016). “Polarization-induced interface and Sr segregation of in situ assembled La0.6Sr0.4Co0.2Fe0.8O3−δ electrodes on Y2O3–ZrO2 electrolyte of solid oxide fuel cells,” ACS Appl. Mater. Interfaces 8(46), 3172931737.Google Scholar
Coelho, A. A. (2003). “Indexing of powder diffraction patterns by iterative use of singular value decomposition,” J. Appl. Crystallogr. 36(1), 8695.CrossRefGoogle Scholar
Dong, F., Chen, D., Ran, R., Park, H., Kwak, C., and Shao, Z. (2012). “A comparative study of Sm0.5Sr0.5MO3−δ (M = Co and Mn) as oxygen reduction electrodes for solid oxide fuel cells,” Int. J. Hydrog. Energy 37(5), 43774387.Google Scholar
Fukunaga, H., Koyama, M., Takahashi, N., Wen, C., and Yamada, K. (2000). “Reaction model of dense Sm0.5Sr0.5CoO3 as SOFC cathode,” Solid State Ion. 132(3–4), 279285.Google Scholar
Geller, S. (1956). “Crystal structure of gadolinium orthoferrite, GdFeO3 ,” J. Chem. Phys. 24(6), 1236.CrossRefGoogle Scholar
Glazer, A. M. (1975). “Simple ways of determining perovskite structures,” Acta Crystallogr. A 31(6), 756762.Google Scholar
Hahn, T. (ed.) (1995). International Tables for Crystallography (Kluwer Academic Publishers, Dordrecht, The Netherlands), 4th ed.Google Scholar
Ishihara, T., Honda, M., Shibayama, T., Minami, H., Nishiguchi, H., and Takita, Y. (1998). “Intermediate temperature solid oxide fuel cells using a new LaGaO3 based oxide ion conductor,” J. Electrochem. Soc. 145(9), 3177.CrossRefGoogle Scholar
Kharko, O. V., Vasylechko, L. O., Ubizskii, S. B., Pashuk, A., and Prots, Y. (2014). “Structural behaviour of continuous solid solution SmCo1−x Fe x O3 ,” Funct. Mater. 21(2), 226232.CrossRefGoogle Scholar
Pérez-Cacho, J., Blasco, J., García, J., and Sanchez, R. (2000). “Relationships between structure and physical properties in SmNi1−xCoxO3 ,” J. Solid State Chem. 150(1), 145153.Google Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2(2), 6571.Google Scholar
Rowles, M. R. (2012). “CONVAS2: a program for the merging of diffraction data,” Powder Diffr. 25(3), 297301.Google Scholar
Sabine, T. M., Hunter, B. A., Sabine, W. R., and Ball, C. J. (1998). “Analytical expressions for the transmission factor and peak shift in absorbing cylindrical specimens,” J. Appl. Crystallogr. 31(1), 4751.Google Scholar
Scarlett, N. V. Y., Rowles, M. R., Wallwork, K. S., and Madsen, I. C. (2011). “Sample-displacement correction for whole-pattern profile fitting of powder diffraction data collected in capillary geometry,” J. Appl. Crystallogr. 44(1), 6064.Google Scholar
Schmitt, B., Brönnimann, C., Eikenberry, E. F., Gozzo, F., Hörmann, C., Horisberger, R., and Patterson, B. (2003). “Mythen detector system,” Nucl. Instrum. Methods Phys. Res. A 501(1), 267272.Google Scholar
Shao, Z., Zhou, W., and Zhu, Z. (2012). “Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells,” Prog. Mater. Sci. 57(4), 804874.Google Scholar
Stinton, G. W. and Evans, J. S. (2007). “Parametric rietveld refinement,” J. Appl. Crystallogr. 40(1), 8795.Google Scholar
Sun, C., Hui, R., and Roller, J. (2009). “Cathode materials for solid oxide fuel cells: a review,” J. Solid State Electrochem. 14(7), 11251144.Google Scholar
Taylor, D. (1984). “Thermal expansion data: III. Sesquioxides, M2O3, with the corundum and the a-, B- and C-M2O3 structures,” Br. Ceram. Trans. J. 83(4), 9298.Google Scholar
Tu, H., Takeda, Y., Imanishi, N., and Yamamoto, O. (1997). “Ln1−xSrxCoO3 (Ln = Sm, Dy) for the electrode of solid oxide fuel cells,” Solid State Ionics 100(3–4), 283288.CrossRefGoogle Scholar
Wallwork, K. S., Kennedy, B. J., and Wang, D. (2007). “The high resolution powder diffraction beamline for the australian synchrotron,” AIP Conf. Proc. 879, 879882.Google Scholar
Wang, J. X., Tao, Y. K., Shao, J., and Wang, W. G. (2009). “Synthesis and properties of (La0.75Sr0.25)0.95MnO3±δ nano-powder prepared via Pechini route,” J. Power Sources 186(2), 344348.Google Scholar
Xia, C., Rauch, W., Chen, F., and Liu, M. (2002). “Sm0.5Sr0.5CoO3 cathodes for low-temperature SOFCs,” Solid State Ion. 149(1–2), 1119.Google Scholar
Yang, L., Zuo, C., Wang, S., Cheng, Z., and Liu, M. (2008). “A novel composite cathode for low-temperature SOFCs based on oxide proton conductors,” Adv. Mater. 20(17), 32803283.Google Scholar
Supplementary material: File

Rowles et al supplementary material

Tables S1-S5

Download Rowles et al supplementary material(File)
File 42.6 KB
Supplementary material: File

Rowles et al supplementary material

Rowles et al supplementary material 1

Download Rowles et al supplementary material(File)
File 9.2 MB