Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T21:34:38.809Z Has data issue: false hasContentIssue false

Synthesis and X-ray diffraction data of (4R)-methyl-3-(1-(4-chlorophenyl)-1H-1,2,3-triazole-4-carbonyl)thiazolidin-4-carboxylate, C14H13ClN4O3S

Published online by Cambridge University Press:  06 November 2019

Fausto M. Güiza
Affiliation:
Grupo de Investigación en Compuestos Orgánicos de Interés Medicinal (CODEIM), Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, A.A. 678, Carrera 27, Calle 9 Ciudadela Universitaria, Bucaramanga, Colombia
Arnold R. Romero Bohórquez
Affiliation:
Grupo de Investigación en Compuestos Orgánicos de Interés Medicinal (CODEIM), Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, A.A. 678, Carrera 27, Calle 9 Ciudadela Universitaria, Bucaramanga, Colombia
J. A. Henao
Affiliation:
Grupo de Investigación en Química Estructural (GIQUE), Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, A.A. 678, Carrera 27, Calle 9 Ciudadela Universitaria, Bucaramanga, Colombia
H. A. Camargo*
Affiliation:
Grupo de Investigación en Nuevos Materiales y Energías Alternativas (GINMEA), Universidad Santo Tomás, Facultad de Química Ambiental, Campus Universitario Floridablanca, Santander, Colombia
*
a)Author to whom correspondence should be addressed. Electronic mail: hernando.camargo@ustabuca.edu.co

Abstract

The new compound (4R)-methyl-3-(1-(4-chlorophenyl)-1H-1,2,3-triazole-4-carbonyl)thiazolidin-4-carboxylate was synthesized by the 1,3-dipolar cycloaddition reaction between (4R)-methyl-3-propionyl-thiazolidin-4-carboxylate (1) and 4-chlorophenylazide using the click chemistry approach. Molecular characterization was carried out by infrared spectroscopy and mass spectrometry. The X-ray powder diffraction study determined that the title compound crystallized in an orthorhombic system with unit-cell parameters a = 20.876 (2) Å, b = 12.111 (1) Å, and c = 6.288 (9) Å. The volume of the unit cell is V = 1589.7 (2) Å3. All measured diffraction maxima were indexed and are consistent with the P2221 space group (No. 17). No detectable impurities were observed.

Type
New Diffraction Data
Copyright
Copyright © International Centre for Diffraction Data 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bonacorso, H., Moraes, M., Wiethan, C., Luz, F., Meyer, A., Zanatta, N., and Martins, M. (2013). “Synthesis of 1H-1,2,3-triazoles – Rufinamide analogs by 1,3-dipolar cycloaddition and eletrocyclization reactions of trifluoroacetyl enolethers under thermal solventless conditions,” J. Fluor. Chem. 156, 112119.CrossRefGoogle Scholar
Boultif, A. and Loüer, D. (2004). “Indexing of powder diffraction patterns of low symmetry lattices by successive dichotomy method,” J. Appl. Crystallogr. 37, 724731.CrossRefGoogle Scholar
de Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern,” J. Appl. Crystallogr. 1, 108113.CrossRefGoogle Scholar
Dong, C. (1999). “PowderX: Windows-95-based program for powder X-ray diffraction data processing,” J. Appl. Crystallogr. 32, 838838.CrossRefGoogle Scholar
Eftekhari-Sis, B. and Zirak, M. (2015). “Chemistry of α-oxoesters: a powerful tool for the synthesis of heterocycles,” Chem. Rev. 115, 151264.CrossRefGoogle ScholarPubMed
Esra Önen, F., Boum, Y., Jacquement, C., Spanedda, M., Jaber, N., Scherman, D., Myllykallio, H., and Herscovici, J. (2008). “Design, synthesis and evaluation of potent thymidylate synthase X inhibitors,” Bioorg. Med. Chem. Lett. 18, 36283631.CrossRefGoogle ScholarPubMed
Gududuru, V., Hurh, E., Sullivan, J., Dalton, J., and Miller, D. (2005). “SAR studies of 2-arylthiazolidine-4-carboxylic acid amides: a novel class of cytotoxic agents for prostate cancer,” Bioorg. Med. Chem. Lett. 15, 40104013.CrossRefGoogle ScholarPubMed
He, Y., Sun, E., Zhao, Y., Hai, L., and Wu, Y. (2014). “The one-pot synthesis of 4-aryl-1H-1,2,3-triazoles without azides and metal catalyzation,” Tetrahedron Lett. 55, 111115.CrossRefGoogle Scholar
Laugier, J. and Bochu, B. (2002). CHEKCELL. “LMGP-Suite of Programs for the Interpretation of X-ray. Experiments,” ENSP/Laboratoire des Matériaux et du Génie Physique, BP 46. 38042 Saint Martin d'Hères, France, http://www.inpg.fr/LMGPhttp://www.ccp14.ac.uk/tutorial/lmgp/.Google Scholar
Li, W., Lu, Y., Wang, Z., Dalton, J., and Miller, D. (2007). “Synthesis and antiproliferative activity of thiazolidine analogs for melanoma,” Bioorg Med. Chem. Lett. 17, 41134117.CrossRefGoogle ScholarPubMed
Mighell, A., Hubbard, C. R., and Stalick, J. K. (1981). NBS*AIDS80: A FORTRAN program for crystallographic data evaluation. Final Report. Washington, DC: Center for Materials Science, National Bureau of Standards, doi:10.1007/978-1-4613-9990-2_9.CrossRefGoogle Scholar
Rachinger, W. A. (1948). “A Correction for the α 1α2 doublet in the measurement of widths of X-ray diffraction lines,” J. Sci. Instrum. 25, 254.CrossRefGoogle Scholar
Saviztky, A. and Golay, M. J. (1964). “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36, 16271639.Google Scholar
Smith, G. S. and Snyder, R. L. (1979). “F N: a criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. 12, 6065.CrossRefGoogle Scholar
Sonneveld, E. J. and Visser, J. W. (1975). “Automatic collection of powder diffraction data from photographs,” J. Appl. Crystallogr. 8, 17.CrossRefGoogle Scholar
Wouters, W., Snoeck, E., and De Coster, R. (1994). “Vorozole, a specific non-steroidal aromatase inhibitor,” Breast Cancer Res. Treat. 30, 8994.CrossRefGoogle ScholarPubMed