Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T06:15:37.475Z Has data issue: false hasContentIssue false

Synthesis and crystal structure of the pyrovanadate Na2ZnV2O7

Published online by Cambridge University Press:  01 March 2012

Alexander P. Tyutyunnik
Affiliation:
Institute of Solid State Chemistry, Ural Branch of Russian Academy of Sciences, Ekaterinburg GSP-145, 620219 Russia
Vladimir G. Zubkov
Affiliation:
Institute of Solid State Chemistry, Ural Branch of Russian Academy of Sciences, Ekaterinburg GSP-145, 620219 Russia
Ludmila L. Surat
Affiliation:
Institute of Solid State Chemistry, Ural Branch of Russian Academy of Sciences, Ekaterinburg GSP-145, 620219 Russia
Boris V. Slobodin
Affiliation:
Institute of Solid State Chemistry, Ural Branch of Russian Academy of Sciences, Ekaterinburg GSP-145, 620219 Russia
Gunnar Svensson*
Affiliation:
Department of Structural Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
*
a)Author to whom correspondence should be addressed. Electronic mail: gunnar@struc.su.se

Abstract

The compound Na2ZnV2O7 with an åkermanite-type structure has been synthesized. It has a tetragonal unit cell, a=8.2711(4), c=5.1132(2) Å, and crystallizes with P-421m symmetry, Z=2. Its crystal structure has been refined from a combination of X-ray and neutron powder diffraction data. The structure contains layers of corner-sharing VO4 and ZnO4 tetrahedra, the former in pairs forming pyrovanadate V2O7 units. The sodium atoms are positioned between the layers, with a distorted antiprismatic coordination of oxygen atoms.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altermatt, D., and Brown, I. D. (1985). “Bond valence parameters obtained from a systematic analysis of the inorganic crystal structure database,” Acta Crystallogr., Sect. B: Struct. Sci.ASBSDK10.1107/S0108768185002063 B41, 244247.Google Scholar
Erragh, F., Boukhari, A., Sadel, A., and Holt, E. M. (1998). “Disodium zink pyrophosphate and disodium (europium) zink pyrophosphate,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun.ACSCEE 54, 13731376.CrossRefGoogle Scholar
Gabelica-Robert, M. (1981). “About a new family of pyrophosphates, pyroarsenates and pyrovanadates of the type A2BX 2O7,” C. R. Acad. Sci. URSSDANKAS 293, 497499.Google Scholar
Larson, A. C., and Von Dreele, R. B. (1987). “GSAS” LANSCE, MS-H805, Los Alamos National Laboratory, Los Alamos, NM 87545,” Program and documentation available from http://public.lanl.gov/gsasGoogle Scholar
Murashova, E. V., Velikodnyi, Yu. A., and Trunov, V. K. (1988). “Structure of potassium magnesium pyrovanadate K2MgV2O7,” Russ. J. Inorg. Chem.RJICAQ 33, 904905.Google Scholar
Sanz, F., Parada, C., Rojo, J. M., Ruiz-Valero, C., and Saez-Puche, R. (1999). “Studies on tetragonal Na2CoP2O7, a novel ionic conductor,” J. Solid State Chem.JSSCBI 145, 604611.CrossRefGoogle Scholar
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.ACACBN10.1107/S0567739476001551 A32, 751767.CrossRefGoogle Scholar
Slobodin, B. V., and Surat, L. L. (2003). “Subsolidus phase diagram for the Na2O–ZnO–(CdO)–V2O5 systems,” Russ. J. Inorg. Chem.RJICAQ 48, 12021205.Google Scholar
Swainson, I. P., Dove, M. T., Schmahl, W. W., and Putnis, A. (1992). “Neutron powder diffraction study of the åkermanite-gehlenite solid solution series,” Phys. Chem. Miner.PCMIDU 19, 185189.CrossRefGoogle Scholar
Wells, A. F. (1984). Structural Inorganic Chemistry, 5th. ed. (Oxford University Press, Oxford, England), pp. 1019-1020.Google Scholar