Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T04:01:33.113Z Has data issue: false hasContentIssue false

Studies of local and intermediate range structure in crystalline and amorphous materials at high pressure using high-energy X-rays

Published online by Cambridge University Press:  01 March 2012

Lars Ehm
Affiliation:
Department of Geosciences, Stony Brook University, Stony Brook, New York 11794-2100
Sytle M. Antao
Affiliation:
Department of Geosciences, Stony Brook University, Stony Brook, New York 11794-2100
Jiuhua Chen
Affiliation:
Department of Geosciences, Stony Brook University, Stony Brook, New York 11794-2100
Darren R. Locke
Affiliation:
Department of Geosciences, Stony Brook University, Stony Brook, New York 11794-2100
F. Marc Michel
Affiliation:
Department of Geosciences, Stony Brook University, Stony Brook, New York 11794-2100
C. David Martin
Affiliation:
Department of Geosciences, Stony Brook University, Stony Brook, New York 11794-2100
Tony Yu
Affiliation:
Department of Geosciences, Stony Brook University, Stony Brook, New York 11794-2100
John B. Parise
Affiliation:
Department of Geosciences, Stony Brook University, Stony Brook, New York 11794-2100
Sytle M. Antao
Affiliation:
Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439
Peter L. Lee
Affiliation:
Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439
Peter J. Chupas
Affiliation:
Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439
Sarvjit D. Shastri
Affiliation:
Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439
Quanzhong Guo
Affiliation:
X17B3, National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973-5000

Abstract

The method of high-energy total elastic X-ray scattering to determine the atomic structure of nanocrystalline, highly disordered, and amorphous materials is presented. The current state of the technique, its potential, and limitations are discussed with two successful studies on the pressure induced phase transition in mackinawite (FeS) and the high-pressure behavior of liquid gallium.

Type
X-Ray Diffraction and Related Techniques
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bosio, L., Cortes, R., and Defrain, A. (1973). “Heat Capacity of Undercooled Liquid Ga and the Crystalline Beta and Gamma Phases,” J. Chim. Phys. Phys.-Chim. Biol.JCPBAN 70, 357359.Google Scholar
Bosio, L., Defrain, A., and Epelboin, I. (1978). “Polymorphism of Gallium at High-Pressure,” J. Chim. Phys. Phys.-Chim. Biol.JCPBAN 75, 145146.CrossRefGoogle Scholar
Cederström, B., Lundqvist, M., and Ribbing, C. (2002). “Multi-Prism X-Ray Lens,” Appl. Phys. Lett.APPLAB10.1063/1.1501443 81, 13991401.CrossRefGoogle Scholar
Chupas, P. J., Qiu, X. Y., Hanson, J. C., Lee, P. L., Grey, C. P., and Billinge, S. J. L. (2003). “Rapid-Acquisition Pair Distribution Function (RA-PDF) Analysis,” J. Appl. Crystallogr.JACGAR10.1107/S0021889803017564 36, 13421347.CrossRefGoogle Scholar
Comez, L., Di Cicco, A., Minicucci, M., Tossici, R., Itiè, J. P., and Polian, A. (2001). “EXAFS Study on Liquid Gallium under High Pressure and High Temperature,” J. Synchrotron Radiat.JSYRES10.1107/S0909049500015909 8, 776778.CrossRefGoogle Scholar
Dadashev, A., Pasternak, M. P., Rozenberg, G. K., and Taylor, R. D. (2001). “Applications of Perforated Diamond Anvils for Very High-Pressure Research,” Rev. Sci. Instrum.RSINAK10.1063/1.1370561 72, 26332637.CrossRefGoogle Scholar
Degtyareva, O., McMahon, M. I., Allan, D. R., and Nelmes, R. J. (2004).“Structural Complexity in Gallium under High Pressure: Relation to Alkali Elements,” Phys. Rev. Lett.PRLTAO10.1103/PhysRevLett.93.205502 93, 205502.CrossRefGoogle ScholarPubMed
Egami, T. and Billinge, J. L. (1994). Underneath the Bragg Peaks: Structural Analysis of Complex Materials (Pergamon Press, Oxford).Google Scholar
Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N., and Hausermann, D. (1996). “Two-Dimensional Detector Software: From Real Detector to Idealised Image or Two-Theta Scan,” High Press. Res.HPRSEL 14, 235248.CrossRefGoogle Scholar
Jayaraman, A., Klement, W., Newton, R. C., and Kennedy, G. C. (1963). “Fusion Curves and Polymorphic Transitions of the Group III Elements—Aluminum, Gallium, Indium, and Thallium—At High Pressures,” J. Phys. Chem. SolidsJPCSAW10.1016/0022-3697(63)90036-2 24, 718.CrossRefGoogle Scholar
Mao, H. K., Bell, P. M., Shaner, J. W., and Steinberg, D. J. (1978). “Specific Volume Measurements of Cu, Mo, Pd, and Ag and Calibration of the Ruby R 1 Fluorescence Pressure Gauge from 0.06 to 1 Mbar,” J. Appl. Phys.JAPIAU10.1063/1.325277 49, 32763283.CrossRefGoogle Scholar
Marshall, W. G., Nelmes, R. J., Loveday, J. S., Klotz, S., Besson, J. M., Hamel, G., and Parise, J. B. (2000). “High-Pressure Neutron-Diffraction Study of FeS,” Phys. Rev. BPRBMDO10.1103/PhysRevB.61.11201 61, 1120111204.CrossRefGoogle Scholar
McGreevy, R. I. (2001). “Reverse Monte Carlo Modeling,” J. Phys.: Condens. MatterJCOMEL10.1088/0953-8984/13/46/201 13, R877R913.Google Scholar
Michel, F. M., Antao, S. M., Chupas, P. J., Lee, P. L., Parise, J. B., and Schoonen, M. A. A. (2005). “Short- to Medium-Range Atomic Order and Crystallite Size of the Initial FeS Precipitate from Pair Distribution Function Analysis,” Chem. Mater.CMATEX 17, 62466255.CrossRefGoogle Scholar
Nelmes, R. J., McMahon, M. I., Belmonte, S. A., and Parise, J. B. (1999). “Structure of the High-Pressure Phase III of Iron Sulfide,” Phys. Rev. BPRBMDO10.1103/PhysRevB.59.9048 59, 90489052.CrossRefGoogle Scholar
Parise, J. B. (2004). “Structure Maps for Constrained Structures at High Pressures from Powder Diffraction” in School on High-Pressure Crystallography, edited by Katrusiak, A. and McMillan, P. M. (Kluwer, Dordrecht), Vol. 140, pp. 3756.CrossRefGoogle Scholar
Parise, J. B., Antao, S. M., Michel, F. M., Martin, C. D., Chupas, P. J., Shastri, S. D., and Lee, P. L. (2005). “Quantitative High-Pressure Pair Distribution Function Analysis,” J. Synchrotron Radiat.JSYRES 12, 554559.CrossRefGoogle ScholarPubMed
Petkov, V. (2005). “Atomic-Scale Structure of Glasses Using High-Energy X-Ray Diffraction,” J. Am. Ceram. Soc.JACTAW 88, 25282531.CrossRefGoogle Scholar
Petkov, V., DiFrancesco, R. G., Billinge, S. J. L., Acharya, M., and Foley, H. C. (1999a). “Local Structure of Nanoporous Carbons,” Philos. Mag. BPMABDJ10.1080/014186399256376 79, 15191530.CrossRefGoogle Scholar
Petkov, V., Jeong, I. K., Chung, J. S., Thorpe, M. F., Kycia, S., and Billinge, S. J. L. (1999b). “High Real-Space Resolution Measurement of the Local Structure of Ga1−xInxAs Using X-Ray Diffraction,” Phys. Rev. Lett.PRLTAO10.1103/PhysRevLett.83.4089 83, 40894092.CrossRefGoogle Scholar
Petkov, V., Trikalitis, P. N., Bozin, E. S., Billinge, S. J. L., Vogt, T., and Kanatzidis, M. G. (2002). “Structure of V2O5nH2O Xerogel Solved by the Atomic Pair Distribution Function Technique,” J. Am. Ceram. Soc.JACTAW 124, 1015710162.Google ScholarPubMed
Petkov, V., Qadir, D., and Shastri, S. D. (2004). “Rapid Structure Determination of Disordered Materials: Study of GeSe2 Glass,” Solid State Commun.SSCOA410.1016/j.ssc.2003.10.007 129, 239243.CrossRefGoogle Scholar
Proffen, T. and Billinge, S. J. L. (1999). “PDFFIT, a Program for Full Profile Structural Refinement of the Atomic Pair Distribution Function,” J. Appl. Crystallogr.JACGAR10.1107/S0021889899003532 32, 572575.CrossRefGoogle Scholar
Proffen, T., Billinge, S. J. L., Egami, T., and Louca, D. (2003). “Structural Analysis of Complex Materials using the Atomic Pair Distribution Function—A Practical Guide,” Z. Kristallogr.ZEKRDZ10.1524/zkri.218.2.132.20664 218, 132143.CrossRefGoogle Scholar
Qiu, X., Thompson, J. W., and Billinge, S. J. L. (2004). “PDFgetX2: A GUI-Driven Program to Obtain the Pair Distribution Function from X-ray Powder Diffraction Data,” J. Appl. Crystallogr.JACGAR10.1107/S0021889804011744 37, 678.CrossRefGoogle Scholar
Schulte, O. and Holzapfel, W. B. (1997). “Effect of Pressure on the Atomic Volume of Ga and Tl up to 68 GPa,” Phys. Rev. BPRBMDO10.1103/PhysRevB.55.8122 55, 81228128.CrossRefGoogle Scholar
Shastri, S. D., Fezzaa, K., Mashayekhi, A., Lee, W. K., Fernandez, P. B., and Lee, P. L. (2002). “Cryogenically Cooled Bent Double-Laue Monochromator for High-Energy Undulator X-rays (50–200 keV),” J. Synchrotron Radiat.JSYRES10.1107/S0909049502009986 9, 317322.CrossRefGoogle ScholarPubMed
Tsay, S.-F. (1993). “Structure of Rapidly Quenched Ga Metal,” Phys. Rev. BPRBMDO10.1103/PhysRevB.48.5945 48, 59455948.CrossRefGoogle ScholarPubMed
Tsay, S.-F. (1994). “Relation between the β and Rapidly Quenched Liquid Phases of Gallium,” Phys. Rev. BPRBMDO10.1103/PhysRevB.50.103 50, 103107.CrossRefGoogle ScholarPubMed
Tsay, S.-F. and Wang, S. (1994). “Anomalies in the Liquid Structure of Ga Metal,” Phys. Rev. BPRBMDO10.1103/PhysRevB.50.108 50, 108112.CrossRefGoogle ScholarPubMed
Wagner, C. N. J. (1978). “Direct Methods for the Determination of Atomic-scale Structure of Amorphous Solids (X-ray, Electron, and Neutron Scattering),” J. Non-Cryst. SolidsJNCSBJ10.1016/0022-3093(78)90097-2 31, 140.CrossRefGoogle Scholar
Wasada, Y. (1980). The Structure of Noncrystalline Materials (McGraw-Hill, New York).Google Scholar
Wei, S. Q., Oyanagi, H., Liu, W. H., Hu, T. D., Yin, S. L., and Bian, G. Z. (2000). “Local Structure of Liquid Gallium Studied by X-ray Absorption Fine Structure,” J. Non-Cryst. SolidsJNCSBJ10.1016/S0022-3093(00)00251-9 275, 160168.CrossRefGoogle Scholar