Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T21:23:55.964Z Has data issue: false hasContentIssue false

The structure of cubic MOF [{Ca(H2O)6}{CaGd(oxydiacetate)3}2].4H2O. A comparison between structural models obtained from Rietveld refinement of conventional and synchrotron X-ray powder diffraction data and standard refinement of single-crystal X-ray diffraction data

Published online by Cambridge University Press:  30 November 2012

Leopoldo Suescun*
Affiliation:
Cryssmat-Lab/DETEMA, Facultad de Química, Universidad de la República, Montevideo, Uruguay Centro Interdisciplinario de Nanotecnología y Química y Física de Materiales, Universidad de la República, Montevideo, Uruguay
Jun Wang
Affiliation:
National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, Upton, NY, USA
Ricardo Faccio
Affiliation:
Cryssmat-Lab/DETEMA, Facultad de Química, Universidad de la República, Montevideo, Uruguay Centro Interdisciplinario de Nanotecnología y Química y Física de Materiales, Universidad de la República, Montevideo, Uruguay
Guzmán Peinado
Affiliation:
Cryssmat-Lab/DETEMA, Facultad de Química, Universidad de la República, Montevideo, Uruguay Departamento Estrella Campos, Facultad de Química, Universidad de la República, Montevideo, Uruguay
Julia Torres
Affiliation:
Centro Interdisciplinario de Nanotecnología y Química y Física de Materiales, Universidad de la República, Montevideo, Uruguay Departamento Estrella Campos, Facultad de Química, Universidad de la República, Montevideo, Uruguay
Carlos Kremer
Affiliation:
Centro Interdisciplinario de Nanotecnología y Química y Física de Materiales, Universidad de la República, Montevideo, Uruguay Departamento Estrella Campos, Facultad de Química, Universidad de la República, Montevideo, Uruguay
Robert A. Burrow
Affiliation:
Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
*
a)Author to whom correspondence should be addressed. Electronic mail: leopoldo@fq.edu.uy

Abstract

The structure of the metal–organic framework (MOF) compound [{Ca(H2O)6}{CaGd(oxydiacetate)3}2]·4H2O was determined by single-crystal X-ray diffraction and refined using conventional single-crystal X-ray diffraction data. In addition, the structure was refined using powder diffraction data collected from two sources, a conventional X-ray diffractometer in Bragg–Brentano geometry and a 12-detector high resolution synchrotron-based diffractometer in transmission geometry. Data from the latter were processed in three different ways to account for crystalline decay or radiation damage. One dataset was obtained by averaging the multiple detector patterns, another dataset was obtained by cutting the non-overlapping portions of each detector to consider only the first few minutes of data collection and a dose-corrected dataset was obtained by fitting the independent peaks in every dataset and extrapolating the intensity and peak position to the initial time of data collection or to zero-absorbed dose. The compared structural models obtained show that special processing of powder diffraction data produced a much accurate model, close to the single-crystal-based model for this particular compound with heavy atoms in high symmetry positions that do not contribute to a significant number of diffraction intensities.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, F. H. (2002). “The Cambridge structural database: a quarter of a million crystal structures and rising,” Acta Crystallogr., Sect. B: Struct. Sci. 58, 380388.CrossRefGoogle ScholarPubMed
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Burla, M. C., and Polidori, G. (1995). “On the number of statistically independent observations in a powder diffraction pattern,” J. Appl. Cryst. 28, 738744.CrossRefGoogle Scholar
Ariga, K., Vinu, A., Hill, J. P., and Mori, T. (2007). “Coordination chemistry and supramolecular chemistry in mesoporous nanospace,” Coord. Chem. Rev. 251, 25622591.CrossRefGoogle Scholar
Bénard, P., Louër, M., and Louër, D. (1991). “Solving the crystal structure of Cd5(OH)8(NO3)2·2H2O from powder diffraction data. A comparison with single crystal data,” Powder Diffr. 6, 1015.CrossRefGoogle Scholar
Bünzli, J. C. G. and Piguet, C. (2005). “Taking advantage of luminescent lanthanide ions,” Chem. Soc. Rev. 4, 10481077.CrossRefGoogle Scholar
Chang, L. M., Zhao, X., Gu, Z. G., Liu, W. J., Wei, Z. Q., Liu, Y. L., Mo, H. H., and Yu, S. T. (2012). “Four LnIII-MgII metal organic frameworks containing fan-like helices and independent [Mg(H2O)6]2+ units,” Z. Anorg. Allg. Chem. 638, 652657.CrossRefGoogle Scholar
Czaja, A. U., Trukhan, N., and Müller, U. (2009). “Industrial applications of metal–organic frameworks,” Chem. Soc. Rev. 38, 12841293.CrossRefGoogle ScholarPubMed
David, W. I. F. (1999). “On the number of statistically independent reflections in a powder diffraction pattern,” J. Appl. Cryst. 32, 654663.CrossRefGoogle Scholar
David, W. I. F. and Shankland, K. (2008). “Structure determination from powder diffraction data,” Acta Crystallogr., Sect. A: Found. Crystallogr. 64, 5264.CrossRefGoogle ScholarPubMed
Dollase, W. A. (1986). “Correction of intensities for preferred orientation in powder diffractometry: application of the March model,” J. Appl. Cryst. 19, 267272.CrossRefGoogle Scholar
Domínguez, S., Torres, J., Peluffo, F., Mederos, A., González-Platas, J., Castiglioni, J., and Kremer, C. (2007). “Mixed 3d/4f polynuclear complexes with 2,2′-oxydiacetate as bridging ligand: synthesis, structure and chemical speciation of La–M compounds (M = bivalent cation),” J. Mol. Struct. 829, 5764.CrossRefGoogle Scholar
Férey, G. (2008). “Hybrid porous solids: past, present, future,” Chem. Soc. Rev. 37, 191214.CrossRefGoogle ScholarPubMed
Gascoigne, D., Tarling, S. E., Barnes, P., Pygall, C. F., Benard, P., and Louër, D. (1994). “Ab initio structure determination of Zr(OH)2SO4·3H2O using conventional monochromatic X-ray powder diffraction,” J. Appl. Crystallogr. 27, 399405.CrossRefGoogle Scholar
Kremer, C., Torres, J., and Domínguez, S. (2008). “Lanthanide complexes with oda, ida, and nta: from discrete coordination compounds to supramolecular assemblies,” J. Mol. Struct. 879, 130149.CrossRefGoogle Scholar
Larson, A. C. and Von Dreele, R. B. (2004). General Structure Analysis System (GSAS) (Report LAUR 86–748). Los Alamos, NM: Los Alamos National Laboratory.Google Scholar
Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X., and Toby, B. H. (2008). “A twelve-analyzer detector system for high-resolution powder diffraction,” J. Synchrotron Rad. 15, 427432.CrossRefGoogle ScholarPubMed
Louër, M., Louër, D., Bétourné, E., and Touboul, M. (1996). “Structure solution of lithium diborate hydrate: a comparison of powder diffraction with single-crystal analyses,” Adv. X-ray Anal. 40.Google Scholar
Murray, L. J., Dinca, M., and Long, J. R. (2009). “Hydrogen storage in metal–organic frameworks,” Chem. Soc. Rev. 38, 12941314.CrossRefGoogle ScholarPubMed
Mao, J.-G., Song, L., Huang, X.-Y., and Huang, J.-S. (1997). “Synthesis and crystal structure of a novel lanthanide-copper mixed metal complex: Gd2Cu3{O(CH2COO)2}6·9H2O,” Polyhedron 16, 963966.CrossRefGoogle Scholar
Maspoch, D., Ruiz-Molina, D., and Veciana, J. (2007). “Old materials with new tricks: multifunctional open-framework materials,” Chem. Soc. Rev. 36, 770818.CrossRefGoogle ScholarPubMed
Moulton, B. and Zaworotko, M. J. (2001). “From molecules to crystal engineering:  supramolecular isomerism and polymorphism in network solids,” Chem. Rev. 101, 16291658.CrossRefGoogle ScholarPubMed
Prasad, T. K., Rajasekharan, M. V. and Costes, J. P. (2007). “A cubic 3d–4f structure with only ferromagnetic Gd–Mn Interactions,” Angew. Chem. Int. Ed. 46, 28512854.CrossRefGoogle ScholarPubMed
Rietveld, H. M. (1967). “Line profiles of neutron powder-diffraction peaks for structure refinement,” Acta Crystallogr. 22, 151152.CrossRefGoogle Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 6571.CrossRefGoogle Scholar
Robson, R. (2008). “Design and its limitations in the construction of bi- and poly-nuclear coordination complexes and coordination polymers (aka MOFs): a personal view,” Dalton Trans. 42, 51135131.CrossRefGoogle Scholar
Sheldrick, G. M. (2008). “A short history of SHELX,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 64, 112122.CrossRefGoogle Scholar
Shen, J., Sun, L. D. and Yan, C. H. (2008). “Luminescent rare earth nanomaterials for bioprobe applications,” Dalton Trans. 42, 56875697.CrossRefGoogle Scholar
Sisson, A. L., Shah, M. R., Bhosale, S., and Matile, S. (2006). “Synthetic ion channels and pores (2004–2005),” Chem. Soc. Rev. 35, 12691286.CrossRefGoogle ScholarPubMed
Stephens, P. (1999). “Phenomenological model of anisotropic peak broadening in powder diffraction,” J. Appl. Cryst., 32, 281289.CrossRefGoogle Scholar
Toby, B. H. (2001). “EXPGUI, a graphical user interface for GSAS,” J. Appl. Cryst. 34, 210213.CrossRefGoogle Scholar
Toby, B. H. (2005). “CMPR – a powder diffraction toolkit,” J. Appl. Cryst 38, 10401041.CrossRefGoogle Scholar
Torres, J., Peluffo, F., Domínguez, S., Mederos, A., Arrieta, J. M., Castiglioni, J., Lloret, F., and Kremer, C. (2006). “2,2′-Oxydiacetato-bridged complexes containing Sm(III) and bivalent cations. Synthesis, structure, magnetic properties and chemical speciation,” J. Mol. Struct. 825, 6069.CrossRefGoogle Scholar
Thompson, P., Cox, D. E., and Hastings, J. B. (1987). “Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al2O3,” J. Appl. Cryst., 20, 7983.CrossRefGoogle Scholar
Uemura, T., Yanai, N., and Kitagawa, S. (2009). “Polymerization reactions in porous coordination polymers,” Chem. Soc. Rev. 38, 12281236.CrossRefGoogle ScholarPubMed
Wang, Jun, Toby, B., Lee, P., Ribaud, L., Antao, S., Kurtz, C., Ramanathan, M., Von Dreele, R., and Beno, M. (2008). “A dedicated powder diffraction beamline at the Advanced Photon Source: commissioning and early operational results,” Rev. Sci. Instrum. 79, 085105.CrossRefGoogle ScholarPubMed