Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T21:50:05.220Z Has data issue: false hasContentIssue false

Structural study of a series of synthetic goethites obtained in aqueous solutions containing cadmium(II) ions

Published online by Cambridge University Press:  05 March 2012

E. E. Sileo*
Affiliation:
INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Piso 3, C1428EHA, Buenos Aires, Argentina
P. S. Solı´s
Affiliation:
INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Piso 3, C1428EHA, Buenos Aires, Argentina
C. O. Paiva-Santos
Affiliation:
Instituto de Quı´mica, Universidade Estadual Paulista, UNESP, Araraquara, 14801-970 Sa˜o Paulo, Brazil
*
a)Electronic mail: sileo@qi.fcen.uba.ar

Abstract

The capacity of goethite for CdII substitution has been explored in a series of synthetic samples prepared from FeIII and CdII nitrate solutions aged 21 days in alkaline media. The total metal content ([Fe]+[Cd]) was 0.071 M in all preparations. The samples have been characterized by chemical and X-ray diffraction analysis; the morphology of the solids is described. The cell parameters for all samples were obtained by the Rietveld fits to the X-ray diffraction data. Refined structures show that for samples prepared at the final molar ratio μCd≤5.50 (expressed as μCd=100×[Cd]/[Cd]+[Fe]), a (Cd, Fe)-goethite is the only crystalline product. In these samples, the unit cell parameters increased as a function of Cd concentration, indicating Cd incorporation in the structural frame. At the preparative ratio, μCd=7.03, the incorporation of Cd in the goethite structure is drastically reduced and a probable Cd-substituted hematite is formed together with the Fe,Cd-goethite.

Type
New Diffraction Data
Copyright
Copyright © Cambridge University Press 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balistrieri, I. S.and Murray, J. W. (1982). “The Adsortion of Cu, Pb, Zn and Cd on Goethite from Mayor Ion Seawater,” Geochim. Cosmochim. Acta GCACAK 46, 12531265. gca, GCACAK CrossRefGoogle Scholar
Blake, R. L., Hessevick, R. E., Zoltai, T., and Finger, L. W. (1966). “Refinement of the Hematite Structure,” Am. Mineral. AMMIAY 74, 177186. amn, AMMIAY Google Scholar
Blesa, M. A.and Matiejevic, E. (1989). “Phase Transformations of iron oxides, oxohydroxides, and hydrous oxides in aqueous media,” Ad. Coll. and Int. Science ZZZZZZ 29, 173221.Google Scholar
Collins, C. R., Vala Ragnarsdottir, K., and Sherman, D. M. (1999). “Effect of Inorganic and Organic Ligands on the Mechanism of Cadmium Sortion to Goethite,” Geochim. Cosmochim. Acta GCACAK 63, 19893002. gca, GCACAK CrossRefGoogle Scholar
Cornell, R. M.and Giovanoli, R. (1987). “Effect of Manganese on the Transformation of Ferrihydrite into Goethite and Jacobsite in Alkaline Media,” Clays Clay Miner. CLCMAB 35, 1120. cld, CLCMAB Google Scholar
Cornell, R. M.and Giovanoli, R. (1989). “Effect of Cobalt on the Formation of Crystalline Iron Oxides from Ferrihydrites in Alkaline Media,” Clays Clay Miner. CLCMAB 37, 6570. cld, CLCMAB CrossRefGoogle Scholar
Cornell, R. M. and Schwertmann, U. (1996). “The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses,” 573, VHC, New York.Google Scholar
Diaz, C., Furet, N. R., Nikolaev, V. L., Rusakov, V. S., and Cordeiro, M. C. (1989). “Mo¨ssbauer Effect Study of Co, Ni, Mn, and Al Bearing Goethites,” Hyperfine Interact. HYINDN 46, 689693. hfi, HYINDN Google Scholar
Dollase, W. A. (1986). “Corrections of Intensities for Preferred Orientations in Powder Diffractometry: Applications of the March Model,” J. Appl. Crystallogr. JACGAR 19, 267272. acr, JACGAR CrossRefGoogle Scholar
Ebinger, M. H.and Schulze, D. G. (1989). “Mn-substituted Goethite and Fe-substituted Groutite Synthesized at Acid pH,” Clays Clay Miner. CLCMAB 37, 151156. cld, CLCMAB CrossRefGoogle Scholar
Feitknecht, W.and Michaelis, W. (1962). “U¨ber die Hydrolyse von Eisen(III)-perchlorat-Lo¨sungen,” Helv. Chim. Acta HCACAV 45, 212224. hca, HCACAV Google Scholar
Fisher, W. R. (1971). “Modellversuche zur Bildung und Auf-lo¨sung von Goethit und amorphen Eisenoxiden im Bodem,” Diss. T. U. Mu¨nchen.Google Scholar
Forbes, E. A., Posner, A. M., and Quirk, J. P. (1979). “The Specific Adsorption of Divalent Cd, Co, Cu, Pb and Zn on Goethite,” J. Soil Sci. JSSCAH 27, 154166. jws, JSSCAH Google Scholar
Gasser, U. G., Nuesch, R., Singer, M. J., and Jeanroy, E. (1999). “Distribution of Manganese in Synthetic Goethite,” Clay Miner. CLMIAF 34, 291299. clj, CLMIAF CrossRefGoogle Scholar
Gerth, J. (1990). “Unit-cell Dimensions of Pure and Trace Metal-associated Goethites,” Geochim. Cosmochim. Acta GCACAK 54, 363371. gca, GCACAK Google Scholar
Giovanoli, R.and Cornell, R. M. (1992). “Crystallization of Metal Substituted Ferrihydrites,” Z. Pflanzenernahr. Bodenk. ZZZZZZ 155, 455460.CrossRefGoogle Scholar
Jin, T. Y., Lu, J., and Nordberg, M. (1998). “Toxicokinetics and Biochemistry of Cadmium with Special Emphasis on the Role of Metallothionein,” Neurotoxicology NRTXDN 19, 529535. 6da, NRTXDN Google ScholarPubMed
Larson, A. C. and Von Dreele, R. B. (1994). General Structure Analysis System (GSAS), Los Alamos National Laboratory report LAUR 86-748.Google Scholar
Lehoczky, E., Szabo, L., Horvath, S., Marth, P., and Szabados, I. (1998). “Cadmium Uptake by Lettuce in Different Soils,” Comm. Soil. Sci. Plant Anal. ZZZZZZ 29, 19031912.Google Scholar
Lim-Numez, R. and Gilkes, R. J. (1985). “Acid Dissolution of Synthetic Metal-containing Goethites and Hematites,” Proc. Int. Clay Conf. Clay Mineral Soc. Am., pp. 197–204.Google Scholar
Manceau, A., Schlegel, M. L., Musso, M., Sole, V. A., Gauthier, C., Petit, P. E., and Trolard, F. (2000). “Crystal Chemistry of Trace Elements in Natural and Synthetic Goethite,” Geochim. Cosmochim. Acta GCACAK 64, 36433661. gca, GCACAK Google Scholar
Norrish, K.and Taylor, R. M. (1961). “The Isomorphous Replacement of Iron by Aluminium in Soil Goethites,” J. Soil Sci. JSSCAH 12, 294306. jws, JSSCAH Google Scholar
Parkman, R. H., Charnock, J. M., Bryan, N. D., Livens, F. R., and Vaughan, D. J. (1999). “Reactions of Copper and Cadmium Ions in Aqueous Solution with Goethite, Lepidocrocite, Mackinawite, and Pyrite,” Am. Mineral. AMMIAY 84, 407419. amn, AMMIAY CrossRefGoogle Scholar
Rietveld, H. M. (1969). “A Profile Refinement Method for Nuclear and Magnetic Structures,” J. Appl. Crystallogr. JACGAR 2, 6571. acr, JACGAR CrossRefGoogle Scholar
Schwertmann, U., Friedl, J., Stanjek, H., and Schulze, D. G. (2000). “The effect of Al on Fe Oxides. XIX Formation of Al-substituted Hematite from Ferrihydrite at 25° and pH 4 to 7,” Clays Clay Miner. CLCMAB 48, 259–172. cld, CLCMAB CrossRefGoogle Scholar
Schwertmann, U., Gasser, U., and Sticher, H. (1989). “Chromium-for-iron Substitution in Synthetic Goethites,” Geochim. Cosmochim. Acta GCACAK 53, 12931297. gca, GCACAK Google Scholar
Schwertmann, U. and Cornell, R. M. (1991). “Iron Oxides in the Laboratory,” pp. 46, VHC, New York, USA.Google Scholar
Schwertmann, U.and Pfab, G. (1994). “Structural Vanadium in Synthetic Goethite,” Geochim. Cosmochim. Acta GCACAK 58, 43494352. gca, GCACAK CrossRefGoogle Scholar
Schwertmann, U.and Fisher, W. R. (1966). “ZurBildung von α-FeOOH and α-Fe2O3 aus amorphem Eisen(III)-hydroxid. III.Z. Anorg. Allg. Chem. ZAACAB 346, 137142. zaa, ZAACAB CrossRefGoogle Scholar
Sileo, E. E., Ramos, A. Y., Magaz, G. E., and Blesa, M. A. “Long-range vs. Short-range Ordering in Synthetic Cr-substituted Goethites,” in preparation.Google Scholar
Sileo, E. E., Alvarez, M., and Rueda, E. H. (2001). “Structural Studies on the Manganese for Iron Substitution in the Synthetic Goethite-Jacobsite System,” Int. Inorg. Mater. ZZZZZZ 3, 271279.Google Scholar
Stephens, P. W. (1999). “Phenomenological model of anisotropic bradening in powder diffraction,” J. Appl. Crystallogr. JACGAR 32, 281289. acr, JACGAR CrossRefGoogle Scholar
Stiers, W.and Schwertmann, U. (1985). “Evidence for Manganese Substitution in Synthetic Goethite.Geochim. Cosmochim. Acta GCACAK 49, 19091911. gca, GCACAK CrossRefGoogle Scholar
Szytula, A., Burewicz, A., Dimitrijevic, Z., Krasnicki, S., Rzany, H., Todorovic, J., Wanic, A., and Wolski, W. (1980). “Neutron Diffraction Studies of α-FeOOH,” Phys. Stat. Solidi ZZZZZZ 26, 429434.Google Scholar
Thompson, P., Cox, D. E., and Hastings, J. B. (1987). “Rietveld Refinement of Debye-Scherrer Synchrotron X-ray data from Al2O3,” J. Appl. Crystallogr. JACGAR 20, 7983. acr, JACGAR Google Scholar
Vandenberghe, R. E., Verbeeck, A. E., De Grave, E., and Stiers, W. (1986). “Mo¨ssbauer Effect Study of Mn-substituted Goethite and Hematite,” Hyperfine Interact. HYINDN 29, 11571160. hfi, HYINDN Google Scholar
Venema, P., Hiemstra, T., and Van Riemsdijk, W. H. (1996). “Multisite Adsortion of Cadmium on Goethite,” J. Colloid Interface Sci. JCISA5 183, 515527. jci, JCISA5 Google Scholar
Wolska, E.and Schwertmann, U. (1989). “Nonstoichiometric structures during dehydroxylation of goethite,” Z. Kristallogr. ZEKRDZ 189, 223237. zek, ZEKRDZ Google Scholar