Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T22:40:03.624Z Has data issue: false hasContentIssue false

Rietveld refinement for indium nitride in the 105–295 K range

Published online by Cambridge University Press:  06 March 2012

W. Paszkowicz*
Affiliation:
Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
R. Černý
Affiliation:
University of Geneva, Laboratory of Crystallography, 24 Quai E. Ansermet, CH-1211 Geneva 4, Switzerland
S. Krukowski
Affiliation:
High-Pressure Research Centre, Polish Academy of Sciences, 01-142 Warsaw, ul. Sokołowska 29/37, Poland
*
a)Electronic mail: paszk@ifpan.edu.pl

Abstract

Results of Rietveld refinement for indium nitride data collected in the temperature range 105–295 K are presented. Acicular microcrystals of indium nitride prepared by reaction of liquid indium with nitrogen plasma were studied by X-ray diffraction. The diffraction measurements were carried out at the Swiss-Norwegian Beamline SNBL (ESRF) using a MAR345 image-plate detector. Excellent counting statistics allowed for refinement of the lattice parameters of InN as well as those of the metallic indium secondary phase. In the studied temperature range, the InN lattice parameters show a smooth increase that can be approximated by a linear function. Lattice-parameter dependencies confirm the trends indicated earlier by data measured using a conventional equipment. The relative change of both the a and c lattice parameters with increasing the temperature in the studied range is about 0.05%. The axial ratio slightly decreases with rising temperature. The experimental value of the free structural parameter, u=0.3769(14), is reported for InN for the first time. Its temperature variation is found to be considerably smaller than the experimental error. The thermal-expansion coefficients (TECs), derived from the linearly approximated lattice-parameter dependencies, are αa=3.09(14)×10−6 K−1 and αc=2.79(16)×10−6 K−1. The evaluated TECs are generally consistent with the earlier data. For the present dataset, the accuracy is apparently higher for both, the lattice parameters and thermal-expansion coefficients, than for the earlier results. The refined lattice parameter cIn of the indium secondary phase exhibits the known strongly nonlinear behavior; a shift (ΔT equal about −50 K) of the maximum in cIn(T) dependence is observed with respect to the literature data.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angus, J. C., Argoitia, A., Hayman, C. C., Wang, L., Dyck, J. S., and Kash, K. (1997). “Growth of bulk polycrystalline gallium and indium nitride at subatmospheric pressures,” Mater. Res. Soc. Symp. Proc., Vol. 468 (Materials Research Society, Pittsburgh) pp. 149–154.Google Scholar
Bechstedt, F., and Füller, J. (2002). “Do we know the fundamental energy gap of InN?,” J. Cryst. Growth JCRGAE 246, 315319. jcr, JCRGAE CrossRefGoogle Scholar
Besson, J. M., Bellaiche, L., and Kunc, K. (1996). “Second-order pretransitional effects in the high pressure phase transition of indium nitride,” Phys. Status Solidi B PSSBBD 198, 469474. psb, PSSBBD CrossRefGoogle Scholar
Bhattacharya, P., Sharma, T. K., Singh, S., Ingale, A., and Kukreja, L. M. (2002). “Observation of zincblend phase in InN thin films grown on sapphire by nitrogen plasma-assisted pulsed layer deposition,” J. Cryst. Growth JCRGAE 236, 59. jcr, JCRGAE CrossRefGoogle Scholar
Bockowski, M. (2001). “Growth and doping of GaN and AlN single crystals under high nitrogen pressure,” Cryst. Res. Technol. CRTEDF 36, 771787. crt, CRTEDF Google Scholar
Chichibu, S. F., Wada, K., Mullhauser, J., Brandt, O., Ploog, K. H., Mizutani, T., Setoguchi, A., Nakai, R., Sugiyama, M., Nakanishi, H., Korii, K., Deguchi, T., Sota, T., and Nakamura, S. (2000). “Evidence of localization effects in InGaN single-quantum-well ultraviolet light-emitting diodes,” Appl. Phys. Lett. APPLAB 76, 16711673. apl, APPLAB CrossRefGoogle Scholar
Chisholm, J. A., Lewis, D. W., and Bristowe, P. D. (1999). “Classical simulations of the properties of group-III nitrides,” J. Phys.: Condens. Matter JCOMEL 11, L235L239. jcz, JCOMEL Google Scholar
Christensen, N. E., and Gorczyca, I. (1993). “Calculated structural phase transitions of aluminum nitride under pressure,” Phys. Rev. B PRBMDO 47, 43074314. prb, PRBMDO CrossRefGoogle ScholarPubMed
Dyck, J. S., Kash, K., Hayman, C. C., Argoitia, A., Grossner, M. T., Angus, J. C., and Zhou, W. L. (1999). “Synthesis of bulk polycrystalline indium nitride at subatmospheric pressures,” J. Mater. Res. JMREEE 14, 24112417. jmr, JMREEE CrossRefGoogle Scholar
Elwell, D., Feigelson, R. S., Simkins, M. M., and Tiller, W. A. (1984). “Crystal growth of GaN by the reaction between gallium and ammonia,” J. Crypt. Growth JCRGAE 66, 4554. jcr, JCRGAE CrossRefGoogle Scholar
Flower, S. C.and Saunders, G. A. (1990). “The elastic behaviour of indium under pressure and with temperature up to the melting point,” Philos. Mag. B PMABDJ 62, 311328. pmb, PMABDJ Google Scholar
Godlewski, M., and Goldys, E. M. (2001). “Role of localisation effects in GaN and InGaN,” in Smart Optical Structures and Devices, Proc. SPIE PSISDG 4318, 99108. spi, PSISDG CrossRefGoogle Scholar
Goryunova, N. A. (1965). “Chemistry of Diamond-type Semiconductors” (WNT, Warsaw) (in Polish, translation from Russian edition).Google Scholar
Grzegory, I., Jun, J., Krukowski, S., Perlin, P., and Porowski, S. (1993a). “InN thermodynamics and crystal growth at high pressure of N2,Jpn. J. Appl. Phys., Suppl. JJPYA5 32-1, 343345. jjs, JJPYA5 CrossRefGoogle Scholar
Grzegory, I., Jun, J., Krukowski, S., Bockowski, M., and Porowski, S. (1993b). “Crystal growth of III-N compounds under high nitrogen pressure,” Physica B PHYBE3 185, 99102. phb, PHYBE3 CrossRefGoogle Scholar
Grzegory, I., Krukowski, S., Jun, J., Bockowski, M., Wróblewski, M., and Porowski, S. (1994). “Stability of indium nitride at N2 pressure up to 20 kbar.AIP Conf. Proc. APCPCS 309, 565568. apc, APCPCS Google Scholar
Hammersley, A. P. (1995). “FIT2D V5.18 Reference Manual V1.6,” ESRF Internal Report, EXP/AH/95-01.Google Scholar
Inushima, T., Mamutin, V. V., Vekshin, V. A., Ivanov, S. V., Motokawa, M., and Ohoya, S. (2001). “Physical properties of InN with the band gap energy of 1.1 eV,” J. Cryst. Growth JCRGAE 227–228, 481485. jcr, JCRGAE CrossRefGoogle Scholar
Juza, R., and Hahn, H. (1938). “On the crystal structure of Cu3N, GaN and InN,” Z. Anorg. Allg. Chem. ZAACAB 239, 282 (in German). zaa, ZAACAB Google Scholar
Kim, C. C., Je, J. H., Ruterana, P., Degave, F., Nouet, G., Yi, M. S., Noh, D. Y., and Hwu, Y. (2002). “Microstructures of GaN islands on a stepped sapphire surface,” J. Appl. Phys. JAPIAU 91, 42334237. jap, JAPIAU Google Scholar
Kim, K., Lambrecht, W. R. L., and Segall, B. (1996). “Elastic constants and related properties of tetrahedrally bonded BN, AlN, GaN, and InN,” Phys. Rev. B PRBMDO 53, 1631016326. prb, PRBMDO Google Scholar
Krukowski, S., Romanowski, Z., Grzegory, I., and Porowski, S. (1998a). “Interaction of N2 molecule with liquid Ga surface-quantum mechanical calculations (DFT),” J. Cryst. Growth JCRGAE 189–190, 159–156. jcr, JCRGAE CrossRefGoogle Scholar
Krukowski, S., Witek, A., Adamczyk, J., Jun, J., Bockowski, M., Grzegory, I., Łucznik, B., Nowak, G., Wróblewski, M., Presz, A., Gierlotka, S., Stelmach, S., Pałosz, B., Porowski, S., and Zinn, P. (1998b). “Thermal properties of indium nitride,” J. Phys. Chem. Solids JPCSAW 59, 289295. jpx, JPCSAW Google Scholar
Kubota, K., Kobayashi, Y., and Fujimoto, K. (1989). “Preparation and properties of III-V nitride thin films,” J. Appl. Phys. JAPIAU 66, 2984–2298. jap, JAPIAU Google Scholar
Lee, H. C., Lee, K. Y., Yong, Y. J., Lee, J. Y., and Kim, G. H. (1995). “Effect of hydrogen addition on the preferred orientation of AlN films prepared by reactive sputtering,” Thin Solid Films THSFAP 271, 5055. tsf, THSFAP CrossRefGoogle Scholar
Li, X. B., Sun, D. Z., Kong, M. Y., and Yoon, S. F. (1998). “Structural identification of a cubic phase in hexagonal GaN films grown on sapphire by gas-source molecular beam epitaxy,” J. Cryst. Growth JCRGAE 183, 3137. jcr, JCRGAE Google Scholar
Lima, A. P., Tabata, A., Leite, J. R., Kaiser, S., Schikora, D., Schöttker, B., Frey, T., As, D. J., and Lischka, K. (1999). “Growth of cubic InN on InAs(001) by plasma-assisted molecular beam epitaxy,” J. Cryst. Growth JCRGAE 201–202, 396398. jcr, JCRGAE Google Scholar
MacChesney, J. B., Bridenbaugh, P. M., and O’Connor, P. B. (1970). “Thermal stability of indium nitride at elevated temperatures and nitrogen pressures,” Mater. Res. Bull. MRBUAC 5, 783791. mrb, MRBUAC Google Scholar
Mamutin, V. V. (1999). “Growth of AIIIN whiskers and plate-shaped crystals by molecular-beam epitaxy with the participation of the liquid phase,” Tech. Phys. Lett. TPLEED 25, 741744. (transl. from: Pisma Zhurn. Tekh. Fiz. 25, 55-63). tpl, TPLEED CrossRefGoogle Scholar
Miao, W. G., Wu, Y., and Zhou, H. P. (1997). “Morphologies and growth mechanisms of aluminium nitride whiskers,” J. Mater. Sci. JMTSAS 32, 19691975. jmt, JMTSAS CrossRefGoogle Scholar
Monemar, B. (1999). “III-V nitrides—important future electronic materials,” J. Mater. Sci.: Mater. Electron. JSMEEV 10, 227254. eev, JSMEEV Google Scholar
Muñoz, A., and Kunc, K. (1993). “Structure and static properties of indium nitride at low and moderate pressures,” J. Phys.: Condens. Matter JCOMEL 5, 60156022. jcz, JCOMEL Google Scholar
Nakamura, S. (1999). “InGaN-based blue light-emitting diodes and laser diodes,” J. Cryst. Growth JCRGAE 201–202, 290295. jcr, JCRGAE Google Scholar
Nakamura, S. (2000a). “Role of alloy fluctuations in InGaN-based LEDs and laser diodes,” Mater. Sci. Forum MSFOEP 338–342, 16091614. msf, MSFOEP Google Scholar
Nakamura, S. (2000b). “Role of dislocations in InGaN-based LEDs and laser diodes,” Int. J. High Speed Electron. IHSSEF 10, 271279. ihs, IHSSEF CrossRefGoogle Scholar
Osamura, K., Naka, S., and Murakami, Y. (1975). “Preparation and optical properties of Ga1−xInxN thin films,” J. Appl. Phys. JAPIAU 46, 34323437. jap, JAPIAU CrossRefGoogle Scholar
Parala, H., Devi, A., Hipler, F., Maile, E., Birkner, A., Becker, H. W., and Fischer, R. A. (2001). “Investigations on InN whiskers grown by chemical vapour deposition,” J. Cryst. Growth JCRGAE 231, 6874. jcr, JCRGAE CrossRefGoogle Scholar
Paszkowicz, W. (1999). “X-ray powder diffraction data for indium nitride,” Powder Diffr. PODIE2 14, 258260. pdj, PODIE2 Google Scholar
Paszkowicz, W., Adamczyk, J., Krukowski, S., Leszczynski, M., Porowski, S., Sokolowski, J. A., Michalec, M., and Lasocha, W. (1999). “Lattice parameters, density and thermal expansion of InN microcrystals grown by the reaction of nitrogen plasma with liquid indium,” Philos. Mag. A PMAADG 79, 11451154. pma, PMAADG Google Scholar
Paszkowicz, W., and Knapp, M. (1999). Unpublished.Google Scholar
Paulus, B., Shi, F.-J., and Stoll, H. (1997). “A correlated ab initio treatment of the zinc-blende wurtzite polytypism of SiC and III-V nitrides,” J. Phys.: Condens. Matter JCOMEL 9, 27452758. jcz, JCOMEL Google Scholar
Pichugin, I. G., and Tlachala, M. (1978). “X-ray analysis of indium nitride,” Inorg. Mater. INOMAF 14, 135136 (translation from Izv. AN SSSR, Neorg. Mater. 14, 175-176). inm, INOMAF Google Scholar
Podsiadlo, S. (1995). “Stages of the synthesis of indium nitride with the use of urea,” Thermochim. Acta THACAS 256, 375380. tha, THACAS Google Scholar
Prywer, J., and Krukowski, S. (1998). “GaN single crystal habits and their relation to GaN growth under high pressure of nitrogen,” MRS Internet J. Nitride Semicond. Res. MIJNF7 3 (47), 110. mrj, MIJNF7 CrossRefGoogle Scholar
Rodriguez-Carvajal, J. (2001). “Recent developments of the program FULLPROF,” Newslett. IUCr Commission Powder Diffr. PODIE2 26, 1219. pdj, PODIE2 Google Scholar
Romanowski, Z., Krukowski, S., Grzegory, I., and Porowski, S. (2001). “Surface reaction of nitrogen with liquid group III metals,” J. Chem. Phys. JCPSA6 114, 63536363. jcp, JCPSA6 Google Scholar
Sheleg, A.U., and Sevastenko, V.A. (1976) “Investigation of thermal expansion of indium and gallium nitrides,” Vestsi Akad. Navuk BSSR, No. 3, 126-128.Google Scholar
Stampfl, C., and Van de Walle, C.G. (1999) “Density-functional calculations for III-V nitrides using the local-density approximation and the generalized gradient approximation,” Phys. Rev. B PRBMDO 59, 55215535. prb, PRBMDO Google Scholar
Strite, S., Chandrasekhar, D., Smith, D. J., Sariel, J., Chen, H., Teraguchi, N., and Morkoç, H. (1993). “Structural properties of InN films grown on GaAs substrates: observation of the zincblende polytype,” J. Cryst. Growth JCRGAE 127, 204208. jcr, JCRGAE Google Scholar
Tabata, A., Lima, A. P., Teles, L. K., Scolfaro, L. M. R., Leite, J. R., Lemos, V., Schöttker, B., Frey, T., Schikora, D., and Lischka, K. (1999). “Structural properties and Raman modes of zinc blende InN epitaxial layers,” Appl. Phys. Lett. APPLAB 74, 362364. apl, APPLAB CrossRefGoogle Scholar
Tanaka, M., Nakahata, S.Sogabe, K., Nakata, H., and Tobioka, M. (1997). “Morphology and X-ray diffraction peak widths of aluminum nitride single crystals prepared by the sublimation method,” Jpn. J. Appl. Phys., Part 2 JAPLD8 36, L1062L1064. jjc, JAPLD8 CrossRefGoogle Scholar
Tansley, T. L. (1994). “Crystal structure, mechanical properties, thermal properties and refractive index of InN,” in Properties of Group III Nitrides, EMIS Datareviews Series, edited by J. H. Edgar (British Institution of Electrical Engineers Publ., London), pp. 35–40.Google Scholar
Tansley, T. L., and Foley, C. P. (1986). “Optical band gap of indium nitride,” J. Appl. Phys. JAPIAU 59, 32413244. jap, JAPIAU Google Scholar
Ueno, M., Yoshida, M., Onodera, A., Shimomura, O., and Takemura, K. (1994). “Stability of the wurtzite-type structure under high pressure: GaN and InN,” Phys. Rev. B PRBMDO 49, 1421. prb, PRBMDO Google Scholar
Vaidhyanathan, B., Agrawal, D. K., and Roy, R. (2000). “Novel synthesis of nitride powders by microwave-assisted combustion,” J. Mater. Res. JMREEE 15, 974981. jmr, JMREEE Google Scholar
Wang, H. B., Han, J. C., Li, Z. Q., and Du, S. Y. (2001). “Effect of additives on self-propagating high-temperature synthesis of AlN,” J. Eur. Ceram. Soc. JECSER 21, 21932198. jeu, JECSER CrossRefGoogle Scholar
Wang, K., and Reeber, R. R. (2001). “Thermal expansion and elastic properties of InN,” Appl. Phys. Lett. APPLAB 79, 16021604. apl, APPLAB CrossRefGoogle Scholar
Wołcyrz, M., Kubiak, R., and Maciejewski, S. (1981). “X-ray investigation of thermal expansion and atomic thermal vibrations of tin, indium, and their alloys,” Phys. Status Solidi B PSSBBD 107, 245253. psb, PSSBBD Google Scholar
Wright, A. F., and Nelson, J. S. (1995). “Consistent structural properties for AlN, GaN, and InN,” Phys. Rev. B PRBMDO 51, 78667869. prb, PRBMDO CrossRefGoogle ScholarPubMed
Wu, X. H., Kapolnek, D., Tarsa, E. J., Heying, B., Keller, S., Keller, B. P., Mishra, U. K., DenBaars, S. P., and Speck, J. S. (1996). “Nucleation layer evolution in metal-organic chemical vapor deposition grown GaN,” Appl. Phys. Lett. APPLAB 68, 13711373. apl, APPLAB Google Scholar
Wu, J., Walukiewicz, W., Yu, K. M., Ager, J. W., Haller, E. E., Lu, H., Schaff, W. J., Saito, Y., and Nanishi, Y. (2002). “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. APPLAB 80, 39673969. apl, APPLAB CrossRefGoogle Scholar
Yeh, C.-Y., Lu, Z. W., Froyen, S., and Zunger, A. (1992). “Zinc-blende-wurtzite polytypism in semiconductors,” Phys. Rev. B PRBMDO 46, 1008610097. prb, PRBMDO Google Scholar
Zhou, H. P., Chen, H., Liu, Y. C., and Wu, Y. (2000). “Growth of aluminium nitride whiskers by sublimation-recrystallization method,” J. Mater. Sci. JMTSAS 35, 471475. jmt, JMTSAS Google Scholar
Zoroddu, A., Bernardini, F., Ruggerone, P., and Fiorentini, V. (2001). “First-principles prediction of structure, energetics, formation enthalpy, elastic constants, polarization, and piezoelectric constants of AlN, GaN, and InN: comparison of local and gradient-corrected density-functional theory,” Phys. Rev. B PRBMDO 6404, 045208/1-6. prb, PRBMDO Google Scholar