Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T23:16:01.575Z Has data issue: false hasContentIssue false

Preparation of CdTe nanostructures with different crystal structures and morphologies

Published online by Cambridge University Press:  06 March 2012

Yan Ma
Affiliation:
Department of Physics, XinJiang University, Urumqi 830046, Xinjiang, PR China
Jikang Jian
Affiliation:
Department of Physics, XinJiang University, Urumqi 830046, Xinjiang, PR China, and Research Central for Material Physics, XinJiang University, Urumqi 830046, Xinjiang, PR China
Rong Wu
Affiliation:
Department of Physics, XinJiang University, Urumqi 830046, Xinjiang, PR China, and Research Central for Material Physics, XinJiang University, Urumqi 830046, Xinjiang, PR China
Yanfei Sun
Affiliation:
Department of Physics, XinJiang University, Urumqi 830046, Xinjiang, PR China, and Research Central for Material Physics, XinJiang University, Urumqi 830046, Xinjiang, PR China
Jin Li*
Affiliation:
Department of Physics, XinJiang University, Urumqi 830046, Xinjiang, PR China, and Research Central for Material Physics, XinJiang University, Urumqi 830046, Xinjiang, PR China
*
a)Author to whom correspondence should be addressed. Electronic mail: xjjinli@gmail.com

Abstract

CdTe nanorods and various branched nanostructures with different crystal structures were have successfully prepared via the catalyst-assisted vacuum thermal evaporation (CVTE) technique using various experimental parameters. SEM and XRD studies were carried out on the as-prepared CdTe nanostructures. The results show that the morphologies and crystal structures of the products were strongly influenced by the growth conditions and the mole ratios of Bi and CdTe. In the high mole ratio (0.08:1) of Bi and CdTe, CdTe branched nanostructures of CdTe were obtained, while nanorods of CdTe were formed at a lower mole ratio of 0.05:1. The crystal structure of products is either Zinc blende or a two-phase mixture of zinc blende and wurtzite. The content of the wurtzite phase were found to increase with increasing growth temperature. Our results also reveal that high growth temperature tends to form the wurtzite phase, and stacking faults may exist in materials grown in higher temperatures. These nanostructures grow following the vapor–liquid–solid (VLS) mechanism.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fan, Z. Y., Fan, Z. Y., Razavi, H., Do, J.-W., Moriwaki, A., Ergen, O., Chueh, Y. L., Leu, P. W., Ho, J. C., Takahashi, T., Reichertz, L. A., Neale, S., Yu, K., Wu, M., Ager, J. W., and Javey, A. (2009). “Three-dimensional nanopillar-array photovoltaics on low-cost and fiexible substrates,” Nature Mater. 8, 648653.10.1038/nmat2493CrossRefGoogle Scholar
Gur, I., Fromer, N. A., Geier, M. L., and Alivisatos, A. P. (2005). “Air-stable all-inorganic nanocrystal solar cells processed from solution,” Science 310, 462.10.1126/science.1117908CrossRefGoogle ScholarPubMed
ICDD (2004). PDF-2 Release 2004 (Database), edited by McClune, W. F., International Centre for Diffraction Data, Newtown Square, Pennsylvania.Google Scholar
Kumar, S., Ade, M., and Nann, T. (2005). “Synthesis and structural metastability of CdTe nanowires,” Chem. Eur. J. 11, 22202224.10.1002/chem.v11:7CrossRefGoogle ScholarPubMed
Li, S. and Yang, G. W. (2010). “Phase transition of II-VI semiconductor nanocrystals,” J. Phys. Chem. C 114, 1505415060.CrossRefGoogle Scholar
Lin, H., Xia, W., Wu, H. N., and Tang, C. W. (2010). “CdS/CdTe solar cells with MoOx as back contact buffers,” Appl. Phys. Lett. 97, 123504.10.1063/1.3489414CrossRefGoogle Scholar
Murray, C. B., Noms, D. J., and Bawendi, M. G. (1993). “Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites,” J. Am. Chem. Soc. 115, 87068715.10.1021/ja00072a025CrossRefGoogle Scholar
Mutlugun, E., Samarskaya, O., Ozel, T., Cicek, N., Gaponik, N., Eychmuller, A., and Demir, H. V. (2010). “Highly efficient nonradiative energy transfer mediated light harvesting in water using aqueous CdTe quantum dot antennas,” Opt. Express 18, 1072010730.10.1364/OE.18.010720CrossRefGoogle ScholarPubMed
Neretina, S., Hughes, R. A., Britten, J. F., Sochinskii, N. V., Preston, J. S., and Mascher, P. (2007). “Vertically aligned wurtzite CdTe nanowires derived from a catalytically driven growth mode,” Nanotechnology 18, 275301.10.1088/0957-4484/18/27/275301CrossRefGoogle Scholar
Neretina, S., Mascher, P., Hughes, R. A., Braidy, N., Gong, W. H., Britten, J. F., Preston, J. S., Sochinskii, N. V., and Dippo, P. (2006). “Evolution of wurtzite CdTe through the formation of cluster assembled films,” Appl. Phys. Lett. 89, 133101.10.1063/1.2357033CrossRefGoogle Scholar
Olson, J. D., Rodriguez, Y. W., Yang, L. D., Alers, G. B., and Carter, S. A. (2010). “CdTe Schottky diodes from colloidal nanocrystals,” Appl. Phys. Lett. 96, 242103.10.1063/1.3440384CrossRefGoogle Scholar
Ruiz, C. M., Saucedo, E., Martinez, O., and Bermudez, V. (2007). “Hexagonal CdTe-like rods prompted from Bi2Te3 droplets,” J. Phys. Chem. C 111, 55885591.10.1021/jp066625mCrossRefGoogle Scholar
Tang, Z. Y., Kotov, N. A., and Giersig, M. (2002). “Spontaneous organization of single CdTe nanoparticles into luminescent nanowires,” Science 297, 237240.10.1126/science.1072086CrossRefGoogle ScholarPubMed
Wagner, R. S. and Ellis, W. C. (1964). “Study of the filamentary growth of silicon crystals from the vapor,” J. Appl. Phys. 4, 29933000.10.1063/1.1713143CrossRefGoogle Scholar
Yang, L. Y., Wang, W. J., Song, B., Wu, R., Li, J., Sun, Y. F., Shang, F., Chen, X. L., and Jian, J. K. (2010). “Novel route to scalable synthesis of II-VI semiconductor nanowires: Catalyst-assisted vacuum thermal evaporation,” J. Cryst. Growth 312, 28522856.10.1016/j.jcrysgro.2010.06.032CrossRefGoogle Scholar
Yang, L. Y., Wu, R., Li, J., Sun, Y. F., and Jian, J. K. (2011). “CdTe nanosheets and pine-like hyperbranched nanostructures prepared by a modified film technique: Catalyst-assisted vacuum thermal evaporation,” Mater. Lett. 65, 1720.10.1016/j.matlet.2010.09.048CrossRefGoogle Scholar
Ye, Y., Dai, L., Sun, T., You, L. P., Zhu, R., Gao, J. Y., Peng, R. M., Yu, D. P., and Qin, G. G. (2010). “High-quality CdTe nanowires: Synthesis, characterization, and application in photoresponse devices,” J. Appl. Phys. 108, 044301.10.1063/1.3474991CrossRefGoogle Scholar
Zhang, J., Lutich, A. A., Susha, A. S., Rogach, A. L., Jackel, F., and Feldmann, J. (2010). “Single-mode waveguiding in bundles of self-assembled semiconductor nanowires,” Appl. Phys. Lett. 97, 221915.10.1063/1.3524219CrossRefGoogle Scholar
Zhang, J. Y. and Yu, W. W. (2006). “Formation of CdTe nanostructures with dot, rod, and tetrapod shapes,” Appl. Phys. Lett. 89, 123108.10.1063/1.2354448CrossRefGoogle Scholar