Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T14:52:24.071Z Has data issue: false hasContentIssue false

Powder diffraction data for the germanides CoGe and Co5Ge7

Published online by Cambridge University Press:  10 January 2013

N. Audebrand
Affiliation:
Max Planck Institute for Metals Research, Seestrasse 92, D-70174 Stuttgart, Germany
M. Ellner
Affiliation:
Max Planck Institute for Metals Research, Seestrasse 92, D-70174 Stuttgart, Germany
E. J. Mittemeijer
Affiliation:
Max Planck Institute for Metals Research, Seestrasse 92, D-70174 Stuttgart, Germany

Abstract

Precise X-ray powder diffraction data are given for two germanides, CoGe and Co5Ge7. The refined unit cell parameters for CoGe are a=11.630(1) Å, b=3.8014(3) Å, c=4.9347(3) Å and β=100.889(8)° (space group C2/m, Pearson symbol mC16) with volume of the unit cell 214.24(2) Å3; the figures of merit are M20=96, F30=77 (0.0085, 46). The refined unit cell parameters for Co5Ge7 are a=7.6262(4) Å and c=5.8017(5) Å (I4mm, tI24) with volume of the unit cell 337.42(3) Å3; the figures of merit are M20=204 and F22=130(0.0068, 25). The dependence on composition of the unit cell parameters of CoGe is discussed in terms of specific defect structures.

Type
New Diffraction Data
Copyright
Copyright © Cambridge University Press 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bhan, S., and Schubert, K. (1960). “Zum Aufbau der Systeme Kobalt-Germanium, Rhodium-Silizium sowie einiger verwandten Legierungen,” Z. Metallkd. 51, 327339.Google Scholar
Boultif, A., and Louër, D. (1991). “Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method,” J. Appl. Crystallogr. 24, 987993.CrossRefGoogle Scholar
De Wolff, P.M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. 1, 108113.CrossRefGoogle Scholar
International Tables for Crystallography. (1995). (Kluwer Academic, Dordrecht), Vol. A.Google Scholar
Jeitschko, W., and Jaberg, B. (1982). “Structure refinement of Ni 3Sn 4,Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 38, 598600.CrossRefGoogle Scholar
Malaman, B., Steinmetz, J., and Roques, B. (1980). “Etude structurale des germaniures Fe(Co)2−xGe de type β et η, et de leurs alliages avec le Gallium Fe(Co)2−xGe 1−yGa y,J. Less-Common Met. 75, 155176.CrossRefGoogle Scholar
Massalski, T.B., Okamoto, H., Subramanian, P.R., and Kacprzak, L. (1990). Binary Alloy Phase Diagrams, ASM International (The Materials Information Society, Materials Park, OH 44073), Vol. 1.Google Scholar
Mighell, A.D., Hubbard, C.R., and Stalick, J.K. (1981). NBS*AIDS83 is a development of NBS*AIDS80, a FORTRAN Program for Crystallographic Data Evaluation Nat. Bur. Stand. (U.S.) Tech. Note 1141.Google Scholar
Smith, G.J., and Snyder, R.L. (1979). “F N: A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. 12, 6065.CrossRefGoogle Scholar
Stolz, E., and Schubert, K. (1962). “Zur Kenntnis der Phase Co 5Ge 7,Chemie der Erde 22, 709712.Google Scholar