Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T01:16:02.529Z Has data issue: false hasContentIssue false

Neutron and X-ray powder diffraction study of skutterudite thermoelectrics

Published online by Cambridge University Press:  17 February 2016

H. Wang*
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee
M. J. Kirkham
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee
T. R. Watkins
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee
E. A. Payzant
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee
J. R. Salvador
Affiliation:
General Motor Global R&D Center, Warren, Michigan
A. J. Thompson
Affiliation:
Marlow Industries, Dallas, Texas
J. Sharp
Affiliation:
Marlow Industries, Dallas, Texas
D. Brown
Affiliation:
Molycorp, Greenwood Village, Colorado
D. Miller
Affiliation:
Molycorp, Greenwood Village, Colorado
*
a) Author to whom correspondence should be addressed. Electronic mail: wangh2@ornl.gov

Abstract

N- and p-type filled-skutterudite materials prepared for thermoelectric power generation modules were analyzed by neutron diffraction at the POWGEN beam line of the Spallation Neutron Source (SNS) and X-ray diffraction (XRD). The skutterudite powders were processed by melt spinning, followed by ball milling and annealing. The n-type material consists of Ba–Yb–Co–Sb and the p-type material consists of Di–Fe–Ni–Sb or Di–Fe–Co–Sb (Di = didymium, an alloy of Pr and Nd). Powders for prototype module fabrication from General Motors and Marlow Industries were analyzed in this study. XRD and neutron diffraction studies confirm that both the n- and p-type materials have cubic symmetry. Structural Rietveld refinements determined the lattice parameters and atomic parameters of the framework and filler atoms. The cage filling fraction was found to depend linearly on the lattice parameter, which in turn depends on the average framework atom size. This knowledge may allow the filling fraction of these skutterudite materials to be purposefully adjusted, thereby tuning the thermoelectric properties.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bennett, G. L. (1995). “Chapter 41. Space applications” CRC Handbook of Thermoelectrics, edited by Rowe, D. M. (CRC, Boca Raton, FL), p. 520.Google Scholar
Bhattacharya, S., Pope, A. L., Littleton, R. T. IV, Tritt, T. M., Ponnambalam, V., Xia, Y., and Poon, S. J. (2000). “Effect of Sb doping on the thermoelectric properties of Ti-based half-Heusler compounds, TiNiSn1– xSbx,” Appl. Phys. Lett. 77, 2476.Google Scholar
Bierschenk, J. L. (2009). “Chapter 12, Optimized thermoelectrics for energy harvesting applications,” in Energy Harvesting Technologies, New York (Springer), edited by Priya, S. and Inman, D. J. pp. 337350.Google Scholar
Chakoumakos, B. C., Sales, B. C., Mandrus, D., and Keppens, V. (1999). “Disparate atomic displacements in skutterudite-type LaFe3CoSb12, a model for thermoelectric behavior”, Acta Crystallogr. B 55, 341347.Google Scholar
Cordero, B., Gómez, V., Platero-Prats, A. E., Revés, M., Echeverría, J., Cremades, E., Barragán, F., and Alvarez, S. (2008). “Covalent radii revisited”, Dalton Trans., 28322838.Google Scholar
Dianoux, A.-J. and Lander, G. (2003) Neutron Data Booklet (Institut Laue-Langevin, Grenoble), 2nd ed.Google Scholar
Huq, A., Hodges, J. P., Gourdon, O., and Heroux, L. (2011). “POWGEN: a third-generation high resolution high-throughput powder diffraction instrument at the Spallation Neutron Source”, Z. Kristall. Proc. 1, 127135.Google Scholar
Joshi, G., Yan, X., Wang, H., Liu, W., Chen, G., and Ren, Z. F. (2011). “Enhancement in Thermoelectric Figure-Of-Merit of an N-Type Half-Heusler Compound by the Nanocomposite Approach”, Adv. Energy Mater. 1, 643647.Google Scholar
Kuznetsov, V. L., Kuznetsova, L. A., Kaliazin, A. E., and Rowe, D. M. (2000). “Preparation and thermoelectric properties of A(II)8B(III)16B(IV)30 clathrate compounds”, J. Appl. Phys. 87, 7871.Google Scholar
LaLonde, A. D., Pei, Y., Wang, H., and Snyder, G. J. (2011). “Lead telluride alloy thermoelectrics”, Mater. Today 14, 526532.Google Scholar
Larson, A. C. and Von Dreele, R. B. (2000) General Structure Analysis System (GSAS) (Los Alamos National Laboratory Report LAUR 86-748).Google Scholar
Li, H., Tang, X., Zhang, Q., and Uher, C. (2009). “High performance In x Ce y Co4Sb12 thermoelectric materials with in situ forming nanostructured InSb phase”, Appl. Phys. Lett. 94, 102114.Google Scholar
Mendelejeff, V. D. (1869). “Ueber die Bexiehungen der Eigenschaften su den Atomgewichten der Elemente,” Z. Für Chem. 12, 405406.Google Scholar
Morelli, D. T., Caillat, T., Fleurial, J.-P., Borshchevsky, A., Vandersande, J., Chen, B., and Uher, C. (1995). “Low-temperature transport properties of p-type CoSb3 ”, Phys. Rev. B 51, 9622.Google Scholar
Nolas, G. S. (2005). “Chapter 33, Structure, thermal conductivity, and thermoelectric properties of clathrate compounds”, Thermoelectrics Handbook: Macro- to Nano-Structured Materials, edited by Rowe, D. M. (CRC Press, Boca Raton, FL), pp. 33–31.Google Scholar
Nolas, G. S., Morelli, D. T., and Tritt, T. M. (1999). “SKUTTERUDITES: a phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications,” Annu. Rev. Mater. Sci. 29, 89116.Google Scholar
Nolas, G. S., Kaeser, M., Littleton, R. T., and Tritt, T. M. (2000). “High figure of merit in partially filled ytterbium skutterudite materials”, Appl. Phys. Lett. 77, 18551857.Google Scholar
Peng, J., Yang, J., Zhang, T., Song, X., and Chen, Y. (2004). “Preparation and characterization of Fe substituted CoSb3 skutterudite by mechanical alloying and annealing”, J. Alloys Compd. 381, 313316.Google Scholar
Poon, S. J. (2001). “Chapter 2, Semiconductors and semimetals,” in Recent Trends in Thermoelectric Materials Research II, edited by Tritt, T. M., Treatise Editors, Willardson, R. K. and Weber, E. R. (Academic Press, New York), p. 70, 37.Google Scholar
Rogl, G., Grytsiva, A., Bauerb, E., Rogla, P., and Zehetbauerc, M. (2010). “Thermoelectric properties of novel skutterudites with didymium: DDy(Fe1− xCox)4Sb12 and DDy(Fe1− xNix)4Sb12 ”, Intermetallics 18, 5764.CrossRefGoogle Scholar
Sales, B. C., Mandrus, D., and Williams, R. K. (1996). “Filled skutterudite antimonides: a new class of thermoelectric materials”, Science 272, 1325.Google Scholar
Salvador, J. R., Yang, J., Shi, X., Wang, H., Wereszczak, A. A., Kong, H., and Uher, C. (2009). “Transport and mechanical properties of Yb-filled skutterudites”, Phil. Mag. 89, 15171534.Google Scholar
Salvador, J. R., Cho, J. Y., Ye, Z., Moczygemba, J. E., Thompson, A. J., Sharp, J. W., König, J. D., Maloney, R., Thompson, T., Sakamoto, J., Wang, H., Wereszczak, A. A., and Meisner, G. P. (2013). “Thermal to electrical energy conversion of skutterudite-based thermoelectric modules”, J. Electron. Mater., 42, 13891399.Google Scholar
Scock, A. (1993). Proc. Tenth Symp. on Space Nuclear Power and Propulsion, January 10–14, 1993, Albuquerque, NM, USA, 271, 171.Google Scholar
Shi, X., Cho, J. Y., Bai, S. Q., Yang, J. H., Wang, H., Chi, M. F., Salvador, J. R., Zhang, W. Q., Chen, L. D., and Wong-Ng, W. (2010). “On the design of high efficiency thermoelectric clathrates through a systematic cross-substitute of framework elements”, Adv. Funct. Mater. 20, 755763.Google Scholar
Singh, D. J. and Du, M.-H. (2010). “Properties of alkaline-earth-filled skutterudite antimonides: A(FeNi)4Sb12 (A = Ca, Sr, and Ba)”, Phys. Rev. B 82, 075115.Google Scholar
Slack, G. A. and Tsoukala, V. G. (1994) “Some properties of semiconducting IrSb3 ”, J. Appl. Phys. 76, 16651671.Google Scholar
Snyder, G. J. (2009). “Chapter 11, thermoelectric energy harvesting,” in Energy Harvesting Technologies, edited by Priya, S. and Inman, D. J. New York (Springer), pp. 325335.CrossRefGoogle Scholar
Tan, G., Wang, S., Yan, Y., Li, H., and Tang, X. (2012). “Enhanced thermoelectric performance in p-type Ca0.5 Ce0.5 Fe4−x Ni x Sb12 skutterudites by adjusting the carrier concentration”, J. Alloys Compd. 513, 328333.Google Scholar
Tang, X., Zhang, Q., Chen, L., Goto, T., and Hirai, T. (2005). “Synthesis and thermoelectric properties of p-type- and n-type-filled skutterudite R y M x Co4−x Sb12 (R:Ce,Ba,Y;M:Fe,Ni)”, J. Appl. Phys. 97, 093712.Google Scholar
Tang, Y. L., Hanus, R., Chen, S. W., and Snyder, G. J. (2015). “Solubility design leading to high figure of merit in low-cost Ce–CoSb3 skutterudites”, Nat. Commun. 6, 7584.Google Scholar
Toby, B. H. (2001). “EXPGUI, a graphical user interface for GSAS”, J. Appl. Crystallogr. 34, 210213.Google Scholar
Toby, B. H. (2006). “R factors in Rietveld analysis: how good is good enough?”, Powder Diffr. 21, 6770.CrossRefGoogle Scholar
Von Dreele, R. B., Jorgensen, J. D., and Windsor, C. G. (1982). “Rietveld refinement with spallation neutron powder diffraction data”, J. Appl. Crystallogr. 15, 581589.Google Scholar
Zhang, Q., Wang, H., Zhang, Q., Liu, W., Yu, B., Wang, H., Wang, D., Ni, G., Chen, G., and Ren, Z. (2012). “Effect of silicon and sodium on thermoelectric properties of thallium-doped lead telluride-based materials”, Nano Lett. 12, 23242330.Google Scholar