Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T22:55:31.791Z Has data issue: false hasContentIssue false

Laboratory XANES to study vanadium species in vanadium redox flow batteries

Published online by Cambridge University Press:  29 April 2020

Christian Lutz
Affiliation:
Clausthal University of Technology, Institute of Inorganic and Analytical Chemistry, Clausthal-Zellerfeld38678, Germany
Ursula Elisabeth Adriane Fittschen*
Affiliation:
Clausthal University of Technology, Institute of Inorganic and Analytical Chemistry, Clausthal-Zellerfeld38678, Germany
*
a)Author to whom correspondence should be addressed. Electronic mail: ursula.fittschen@tu-clausthal.de

Abstract

The speciation of vanadium in the electrolyte of vanadium redox flow batteries (VRFBs) is important to determine the state of charge of the battery. To obtain a better understanding of the transport of the different vanadium species through the separator polymer electrolyte membranes, it is necessary to be able to determine concentration and species of the vanadium ions inside the nanoscopic water body of the membranes. The speciation of V in the electrolyte of VRFBs has been performed by others at the synchrotron by X-ray absorption near-edge structure analysis (XANES). However, the concentrations are quite high and not necessarily justify the use of a large-scale facility. Here, we show that vanadium species in the electrolyte and inside the ionomeric membranes can be determined by laboratory XANES. We were able to determine V species in the 1.6 M electrolyte with a measurement time of 2.3 h and V species having a concentration of 9.8 g kg−1 inside the membranes (178 µm thick) with a measurement time of 5 h. Our results show that laboratory XANES is an appropriate tool to study these kind of samples.

Type
Proceedings Paper
Copyright
Copyright © International Centre for Diffraction Data 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dimitrakopoulou, M., Huang, X., Kröhnert, J., Teschner, D., Praetz, S., Schlesiger, C., Malzer, W., Janke, C., Schwab, E., Rosowski, F., Kaiser, H., Schunk, S., Schlögl, R., and Trunschke, A. (2017). “Insights into structure and dynamics of (Mn,Fe)Ox-promoted Rh nanoparticles,” Faraday Discuss. doi:10.1039/C7FD00215G.Google Scholar
Honkanen, A.-P., Ollikkala, S., Ahopelto, T., Kallio, A.-J., Blomberg, M., and Huotari, S. (2019). “Johann-type laboratory-scale X-ray absorption spectrometer with versatile detection modes,” Rev. Sci. Instrum. 90, 033107.CrossRefGoogle ScholarPubMed
Jia, C., Liu, Q., Sun, C.-J., Yang, F., Ren, Y., Heald, S. M., Liu, Y., Li, Z.-F., Lu, W., and Xie, J. (2014). “In situ X-ray near-edge absorption spectroscopy investigation of the state of charge of all-vanadium redox flow batteries,” ACS Appl. Mater. Interfaces 6, 1792017925.CrossRefGoogle ScholarPubMed
Le, H. V., Parishan, S., Sagaltchik, A., Göbel, C., Schlesiger, C., Malzer, W., Trunschke, A., Schomäcker, R., and Thomas, A. (2017). “Solid-state ion-exchanged Cu/mordenite catalysts for the direct conversion of methane to methanol,” ACS Catal. 7(2), 14031412.CrossRefGoogle Scholar
Lutz, C. and Fittschen, U. E. A. (2019). “Entwicklung neuer Prozeduren zur Elementbestimmung und Speziation in Vanadium Redox Flow Batterien, Tagungsband 3,” Niedersächsisches Symposium Materialtechnik. doi:10.21268/20190312-0.CrossRefGoogle Scholar
Malzer, W., Grötzsch, D., Gnewkow, R., Schlesiger, C., Urban, S. U., Debeer, S., and Kanngießer, B. (2016). “A Laboratory Spectrometer for X-ray Emission Spectroscopy (XES) in Catalysis Research,” Poster presented at European Conference on X-ray Spectrometry, Gothenburg, Sweden.Google Scholar
Németh, Z., Szlachetko, J., Bajnóczi, E. G., and Vankó, G. (2016). “Laboratory von Hámos X-ray spectroscopy for routine sample characterization,” Rev. Sci. Instrum. 87, 103105.CrossRefGoogle Scholar
Newville, M. (2016). Spectrum: V foil. Available at: http://cars.uchicago.edu/xaslib/spectrum/781.Google Scholar
Schlesiger, C., Anklamm, L., Stiel, H., Malzer, W., and Kanngießer, B. (2015). “XAFS spectroscopy by an X-ray tube based spectrometer using a novel type of HOPG mosaic crystal and optimized image processing,” J. Anal. Atom. Spectrom. 30(5), 10801085.CrossRefGoogle Scholar
Seidler, G. T., Mortensen, D. R., Remesnik, A. J., Pacold, J. I., Ball, N. A., Barry, N., Styczinski, M., and Hoidn, O. R. (2014). “A laboratory-based hard X-ray monochromator for high-resolution X-ray emission spectroscopy and X-ray absorption near edge structure measurements,” Rev. Sci. Instrum. 85, 113906.CrossRefGoogle ScholarPubMed
Seidler, G. T., Mortensen, D. R., Ditter, A. S., Ball, N. A., and Remesnik, A. J. (2016). “A modern laboratory XAFS cookbook,” J. Phys. Conf. Ser. 712, 012015.CrossRefGoogle Scholar
Szlachetko, M., Berset, M., Dousse, J.-C., Hoszowska, J., and Szlachetko, J. (2013). “High-resolution Laue-type DuMond curved crystal spectrometer,” Rev. Sci. Instrum. 84, 093104.CrossRefGoogle ScholarPubMed
Tang, Z., Svoboda, R., Lawton, J. S., Aaron, D. S., Papandrew, A. B., and Zawodzinski, T. A. (2013). “Composition and conductivity of membranes equilibrated with solutions of sulfuric acid and vanadyl sulfate,” J. Electrochem. Soc. 160, F1040F1047.CrossRefGoogle Scholar
Vijayakumar, M., Burton, S. D., Huang, C., Li, L., Yang, Z., Graff, G. L., Liu, J., Hu, J., and Maria, S. K. (2010). “Nuclear magnetic resonance studies on vanadium(IV) electrolyte solutions for vanadium redox flow battery,” J. Power Sources 195, 77097717.CrossRefGoogle Scholar