Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T18:32:41.075Z Has data issue: false hasContentIssue false

Implementation of the self-consistent Kröner–Eshelby model for the calculation of X-ray elastic constants for any crystal symmetry

Published online by Cambridge University Press:  30 April 2019

Arnold C. Vermeulen*
Affiliation:
Malvern Panalytical, Almelo, The Netherlands
Christopher M. Kube
Affiliation:
Department of Engineering Science and Mechanics, Penn State University, University Park, Pennsylvania
Nicholas Norberg
Affiliation:
Malvern Panalytical, Almelo, The Netherlands
*
a)Author to whom correspondence should be addressed. Electronic mail: arnold.vermeulen@panalytical.com

Abstract

In this paper, we will report about the implementation of the self-consistent Kröner–Eshelby model for the calculation of X-ray elastic constants for general, triclinic crystal symmetry. With applying appropriate symmetry relations, the point groups of higher crystal symmetries are covered as well. This simplifies the implementation effort to cover the calculations for any crystal symmetry. In the literature, several models can be found to estimate the polycrystalline elastic properties from single crystal elastic constants. In general, this is an intermediate step toward the calculation of the polycrystalline response to different techniques using X-rays, neutrons, or ultrasonic waves. In the case of X-ray residual stress analysis, the final goal is the calculation of X-ray Elastic constants. Contrary to the models of Reuss, Voigt, and Hill, the Kröner–Eshelby model has the benefit that, because of the implementation of the Eshelby inclusion model, it can be expanded to cover more complicated systems that exhibit multiple phases, inclusions or pores and that these can be optionally combined with a polycrystalline matrix that is anisotropic, i.e., contains texture. We will discuss a recent theoretical development where the approaches of calculating bounds of Reuss and Voigt, the tighter bounds of Hashin–Shtrikman and Dederichs–Zeller are brought together in one unifying model that converges to the self-consistent solution of Kröner–Eshelby. For the implementation of the Kröner–Eshelby model the well-known Voigt notation is adopted. The 4-rank tensor operations have been rewritten into 2-rank matrix operations. The practical difficulties of the Voigt notation, as usually concealed in the scientific literature, will be discussed. Last, we will show a practical X-ray example in which the various models are applied and compared.

Type
Technical Article
Copyright
Copyright © International Centre for Diffraction Data 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Behnken, H. (1992). “Berechnung und Ermittlung der rontgenographischen Elastizitatskonstanten sowie de Mikro- und Makro-Spannungen heterogener und textierter Werkstoffe,” Doctorate thesis, RWTH, Aachen.Google Scholar
Behnken, H., and Hauk, V. (1986). “Berechnung der röntgenographischen Elastizitätskonstanten (REK) des Vielkristalls aus den Einkristalldaten für beliebige Kristallsymmetrie,” Z. Metallkde. 77, 620626.Google Scholar
Brown, J. M., Abrahamson, E. H., and Angel, R. J. (2006). “Triclinic elastic constants for low albite,” Phys. Chem. Miner. 33, 256265.Google Scholar
Brown, J. M., Angel, R. J., and Ross, N. L. (2016). “Elasticity of plagioclase feldspars,” J. Geophys. Res. Solid Earth 121, 663675.Google Scholar
Cullity, B. D. (1956). Elements of X-ray Diffraction (Addison-Wesley Publishing Company, Reading, Massachusetts).Google Scholar
Dederichs, P. H., and Zeller, R. (1973). “Variational treatment of the elastic constants of disordered materials,” Z. Phys. 259, 103116.Google Scholar
Eshelby, J. D. (1957). “The determination of the elastic field of an ellipsoidal inclusion, and related problems,” Proc. R. Soc. Lond. A241, 376396.Google Scholar
Gairola, B. K. D., and Kröner, E. (1981). “A simple formula for calculating the bounds and the self-consistent value of the shear modulus of a polycrystalline aggregate of cubic crystals,” Int. J. Eng. Sci. 19, 865869.Google Scholar
Gnäupel-Herold, T., Creuziger, A. A., and Iadicola, M. (2012). “A model for calculating diffraction elastic constants,” J. Appl. Crystallogr. 45, 197206.Google Scholar
Hashin, Z., and Shtrikman, S. (1962 a). “On some variational principles in anisotropic and nonhomogeneous elasticity,” J. Mech. Phys. Solids 10, 335342.Google Scholar
Hashin, Z., and Shtrikman, S. (1962 b). “A variational approach to the theory of the elastic behavior of polycrystals,” J. Mech. Phys. Solids 10, 343352.Google Scholar
Helnwein, P. (2001). “Some remarks on the compressed matrix representation of symmetric second-order and fourth-order tensors,” Comput. Methods. Appl. Mech. Eng. 190(22–23), 27532770.Google Scholar
Hershey, A. V. (1954). “The elasticity of an isotropic aggregate of anisotropic cubic crystals,” J. Appl. Mech. 21(3), 236240.Google Scholar
Hill, R. (1952). “The elastic behavior of a crystalline aggregate,” Proc. Phys. Soc. A 65, 349354.Google Scholar
Kim, H. S., Hong, S. I., and Kim, S. J. (2001). “On the rule of mixtures for predicting the mechanical properties of composites with homogeneously distributed soft and hard particles,” J. Mater. Process. Tech. 112, 109113.Google Scholar
Kneer, G. (1963). “Die elastischen Konstanten quasiisotroper Vielkristallaggregate,” Phys. Status Solidi 3, K331K335.Google Scholar
Krishnan, R. S., Radha, V., and Gopal, E. S. R. (1971). “Elastic constants of triclinic copper sulphate pentahydrate crystals,” J. Phys. D: Appl. Phys. 4, 171173.Google Scholar
Kröner, E. (1958). “Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls.,” Z. Phys. 151, 504518.Google Scholar
Kröner, E. (1978). “Self-consistent scheme and graded disorder in polycrystal elasticity,” J. Phys. F: Met. Phys. 8, 22612267.Google Scholar
Kube, C. M., and de Jong, M. (2016). “Elastic constants of polycrystals with generally anisotropic crystals,” J. Appl. Phys. 120, 165105, 1–14.Google Scholar
Kuppers, H., and Siegert, H. (1970). “The elastic constants of the triclinic crystals, ammonium and potassium tetraoxalate dihydrate,” Acta Crystallogr. A 26, 401405.Google Scholar
Murray, C. E., Jordan-Sweet, J. L., Bedell, S. W., and Ryan, E. T. (2015). “Stress determination through diffraction: establishing the link between Kröner and Voigt/Reuss limits,” Powder Diffr. 30, 99103.Google Scholar
Neerfeld, H. (1942). “Zur Spannungsberechnung aus röntgenographischen Dehnungsmessungen,” Mitt. K.-Wilh.-Inst. Eisenforsch. 24, 6170.Google Scholar
Reuss, A. (1929). “Berechnung der Flieβgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle,” Z. Angew. Math. Mech. 9, 4958.Google Scholar
Stickfort, J. (1966). “Über den Zusammenhang zwischen röntgenographischer Gitterdehnung und makroskopischen elastischen Spannungen,” Tech. Mitt. Krupp, Forsch.-Ber. 24, 89102.Google Scholar
Voigt, W. (1887). “Theoretische Studien über das Elasticitatsverhaltnisse der Kristalle,” Abh. Kgl. Ges. Wiss. Göttingen 34, 352, 53–100.Google Scholar