Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-25T20:22:08.770Z Has data issue: false hasContentIssue false

Host–guest adsorption behavior of deuterated methane and molecular oxygen in a porous rare-earth metal–organic framework

Published online by Cambridge University Press:  17 November 2014

Stephen H. Ogilvie
Affiliation:
School of Chemistry, The University of Sydney, NSW 2006, Australia
Samuel G. Duyker
Affiliation:
Australian Nuclear Science and Technology Organisation, NSW, Australia
Peter D. Southon
Affiliation:
School of Chemistry, The University of Sydney, NSW 2006, Australia
Vanessa K. Peterson
Affiliation:
Australian Nuclear Science and Technology Organisation, NSW, Australia
Cameron J. Kepert*
Affiliation:
School of Chemistry, The University of Sydney, NSW 2006, Australia
*
a)Author to whom correspondence should be addressed. Electronic mail: cameron.kepert@sydney.edu.au

Abstract

The yttrium-based metal–organic framework, Y(btc) (btc = 1,3,5-benzenetricarboxylate), shows moderate uptake of methane (0.623 mmol g−1) and molecular oxygen (0.183 mmol g−1) at 1 bar and 308 K. Neutron powder-diffraction data for the guest-free, CD4-, and O2-loaded framework reveal multiple adsorption sites for each gas. Both molecular guests exhibit interactions with the host framework characterised by distances between the framework and guest atoms that range from 2.83 to 4.81 Å, with these distances identifying interaction most commonly between the guest molecule and the carboxylate functional groups of the benzenetricarboxylate bridging ligand of the host.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bloch, E. D., Murray, L. J., Queen, W. L., Chavan, S., Maximoff, S. N., Bigi, J. P., Krishna, R., Peterson, V. K., Grandjean, F., Long, G. J., Smit, B., Bordiga, S., Brown, C. M., and Long, J. R. (2011). “Selective binding of O2 over N2 in a redox-active metal-organic framework with open iron(II) coordination sites,” J. Am. Chem. Soc. 133, 1481414822.Google Scholar
D'Alessandro, D. M., Smit, B., and Long, J. R. (2010). “Carbon dioxide capture: prospects for new materials,” Angew. Chem., Int. Ed. 49, 60586082.CrossRefGoogle ScholarPubMed
Das, A., Southon, P. D., Zhao, M., Kepert, C. J., Harris, A. T., and D'Alessandro, D. M. (2012). “Carbon dioxide adsorption by physisorption and chemisorption interactions in piperazine-grafted Ni2(dobdc) (dobdc = 1,4-dioxido-2,5-benzenedicarboxylate),”Dalton Trans. 41, 1173911744.CrossRefGoogle ScholarPubMed
Goodwin, A. L., Calleja, M., Conterio, M. J., Dove, M. T., Evans, J. S. O., Keen, D. A., Peters, L., and Tucker, M. G. (2008). “Colossal positive and negative thermal expansion in the framework material Ag3[Co(CN)6],” Science 319, 794797.Google Scholar
Halder, G. J., Kepert, C. J., Moubaraki, B., Murray, K. S., and Cashion, J. D. (2002). “Guest-Dependent spin crossover in a nanoporous molecular framework material,” Science 298, 17621765.Google Scholar
Larson, A. C. and Von Dreele, R. B. (1994). General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86748.Google Scholar
Liss, K.-D., Hunter, B., Hagen, M., Noakes, T., and Kennedy, S. (2006). “Echidna-the new high-resolution powder diffractometer being built at OPAL,” Physica B 385–386, 10101012.Google Scholar
Luo, J., Xu, H., Liu, Y., Zhao, Y., Daemen, L. L., Brown, C., Timofeeva, T. V., Ma, S., and Zhou, H.-C. (2008). “Hydrogen adsorption in a highly stable porous rare-earth metal-organic framework: sorption properties and neutron diffraction studies,” J. Am. Chem. Soc. 130, 96269627.Google Scholar
Mcdonald, T. M., D'Alessandro, D. M., Krishan, R., and Long, J. R. (2011). “Enhanced carbon dioxide capture upon incorporation of N,N'-dimethylethylenediamine in the metal-organic framework CuBTTri,” Chem. Sci. 2, 20222028.Google Scholar
Metz, B., Davidson, O., Coninck, H. D., and Loos, L. M. (2005). “IPCC, 2005: IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change” [Metz, B., O. Davidson, H. C. de Coninck, M. Loos, and L. A. Meyer (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 442 pp.Google Scholar
Momma, K. and Izumi, F. (2011). “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,” J. Appl. Crystallogr. 44, 12721276.CrossRefGoogle Scholar
Ogilvie, S. H., Duyker, S. G., Southon, P. D., Peterson, V. K., and Kepert, C. J. (2013). “Identification of bridged CO2 binding in a Prussian blue analogue using neutron powder diffraction,” Chem. Commun. 49, 94049406.CrossRefGoogle Scholar
Rosi, N. L., Kim, J., Eddaoudi, M., Chen, B., O'Keefe, M., and Yaghi, O. M. (2005). “Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units,” J. Am. Chem. Soc. 127, 15041518.Google Scholar
Tagliabue, M., Rizzo, C., Millini, R., Dietzel, P. D. C., Blom, R., and Zanardi, S. (2011). “Methane storage on CPO-27-Ni pellets,” J. Porous Mater. 18, 289296.Google Scholar
Toby, B. H. (2001). “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr. 34, 210213.CrossRefGoogle Scholar