Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T08:08:06.934Z Has data issue: false hasContentIssue false

Effect of substitution of Ga on the structure and magnetic properties of Dy2Co17−xGax (0≤x≤7) compounds

Published online by Cambridge University Press:  01 March 2012

Liu FuSheng
Affiliation:
College of Materials Science and Engineering, Shenzhen University and Shenzhen Key Laboratory of Special Functional Materials, Shenzhen 518060, China
Ao WeiQin
Affiliation:
College of Materials Science and Engineering, Shenzhen University and Shenzhen Key Laboratory of Special Functional Materials, Shenzhen 518060, China
Jian YongXi
Affiliation:
College of Materials Science and Engineering, Shenzhen University and Shenzhen Key Laboratory of Special Functional Materials, Shenzhen 518060, China
Li JunQin
Affiliation:
College of Materials Science and Engineering, Shenzhen University and Shenzhen Key Laboratory of Special Functional Materials, Shenzhen 518060, China

Abstract

A series of Dy2Co17−xGax polycrystalline samples with x from 0 to 7 were prepared by arc melting. X-ray powder diffraction analysis indicated that these compounds have the hexagonal Th2Ni17 structure for x≤3 and the rhombohedral Th2Zn17 structure for 3.5≤x≤7. The lattice parameters a and c increase linearly with the gallium content until x=5.3. With further increasing the gallium content x up to 7, the lattice parameter c slightly decreases, whereas the lattice parameter a increases more quickly than that for 0≤x≤5.3. The unit-cell volume shows an approximately linear increase of 6.1 Å3/Ga for 0≤x≤3.0 and 10.1 Å3/Ga for 3.5≤x≤7.0, respectively. Rietveld refinement of the Dy2Co11.7Ga5.3 compound reveals that the Ga atoms occupy all the 6c, 9d, 18f, and 18h sites and preferentially occupy the 6c site. The Curie temperature and the saturation magnetization of the rhombohedral Dy2Co17−xGax compounds decrease almost linearly with increasing Ga content.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, C. W., Kuruzar, D. L., and Miller, A. E. (1974). “Possible magnetic significance of faults and polytypes in R 2Co17 compounds, ” IEEE Trans. Magn.IEMGAQ 10, 716719.CrossRefGoogle Scholar
de Groot, C. H., Buschow, K. H. J., and De Boer, F. R. (1997). “Magnetic properties of R 2Co17−xAlx compounds (R=Ho, Dy, Y), ” Physica BPHYBE310.1016/S0921-4526(96)00857-5 229, 213216.CrossRefGoogle Scholar
Gu, Z. F., Liu, Z. Y., Zeng, D. C., Liang, S. Z., Klaasse, J. C. P., Bruck, E., de Boer, F. R., and Buschow, K. H. J. (2001). “On the occurrence of spin-reorientation transitions in R2Co17−xGax and R2Co17−xAlx compounds, ” J. Alloys Compd.JALCEU10.1016/S0925-8388(01)00894-5 319, 3742.CrossRefGoogle Scholar
Hu, S. J., Wei, X. Z., Zeng, D. C., Liu, Z. Y., Bruck, E., Klaasse, J. C. P., de Boer, F. R., and Buschow, K. H. J. (1999). “Structure and magnetic properties of Y2Co17−xSix compounds, ” Physica BPHYBE310.1016/S0921-4526(99)00139-8 270, 157163.CrossRefGoogle Scholar
Kumar, K. (1988). “RETM5 and RE2TM17 permanent magnets development, ” J. Appl. Phys.JAPIAU 63, R131R57.CrossRefGoogle Scholar
Liang, B., Shen, B. G., Wang, F. W., Zhao, T. Y., Cheng, Z. H., Zhang, S. Y., Gong, H. Y., and Zhan, W. S. (1997). “The magnetic properties of Gd2Co17−xGax compounds, ” J. Appl. Phys.JAPIAU10.1063/1.365757 82, 34523455.CrossRefGoogle Scholar
Moze, O., Giovanelli, L., Kockelmann, W., de Groot, C. H., De Boer, F. R., and Buschow, K. H. J. (1998a). “Magnetic properties of Tb2Co17−xGax compounds studied by magnetic measurements and neutron diffraction, ” J. Alloys Compd.JALCEU 264, 7681.CrossRefGoogle Scholar
Moze, O., Giovanelli, L., Kockelmann, W., de Groot, C. H., De Boer, F. R., and Buschow, K. H. J. (1998b). “Structure and magnetic properties of Nd2Co17−xGax compounds studied by magnetic measurements and neutron diffraction, ” J. Magn. Magn. Mater.JMMMDC10.1016/S0304-8853(98)00291-1 189, 329334.CrossRefGoogle Scholar
Shen, B. G., Cheng, Z. H., Gong, H. Y., Liang, B., Yan, Q. W., and Zhan, W. S. (1995). “Magnetic anisotropy of Dy2Fe17−xGax compounds, ” Solid State Commun.SSCOA410.1016/0038-1098(95)00110-7 95, 813816.CrossRefGoogle Scholar
Tegus, O., Brück, E., Menovsky, A. A., de Boer, F. R., and Buschow, K. H. J. (2000). “Spin-reorientation and anisotropy of the magnetization in single crystalline Ho2Co15Si2, ” J. Alloys Compd.JALCEU10.1016/S0925-8388(00)00676-9 302, 2125.CrossRefGoogle Scholar
Zhang, D., Middleton, D. P., Brück, E., de Boer, F. R., Zhang, Z. D., and Buschow, K. H. J. (1997). “Magnetic properties of R2Co17−xGax compounds (R=Sm and Gd), ” J. Alloys Compd.JALCEU 259, 6568.CrossRefGoogle Scholar
Zhang, C., Klaasse, J. C. P., Brück, E., de Boer, F. R., and Buschow, K. H. J. (1998a). “Magnetic properties of Ho2Co17−xGax compounds, ” J. Alloys Compd.JALCEU 267, 3740.CrossRefGoogle Scholar
Zhang, C., Klaasse, J. C. P., Brück, E., de Boer, F. R., and Buschow, K. H. J. (1998b). “Magnetic properties of Pr2Co17−xGax compounds, ” J. Alloys Compd.JALCEU 266, 4346.CrossRefGoogle Scholar
Zhang, C., Brück, E., de Boer, F. R., and Buschow, K. H. J. (1998c). “Magnetic properties and crystal structure of R2Co17−xGax compounds, ” J. Alloys Compd.JALCEU 270, 7882.CrossRefGoogle Scholar
Zhang, S. Y., Shen, B. G., Liang, B., Cheng, Z. H., Zhang, J. X., Zhang, H. W., Zhao, J. G., and Zhan, W. S. (1998d). “Structure and magnetic properties of Dy2Co17−xGax (x=0−6) compounds, ” J. Alloys Compd.JALCEU 264, 1923.CrossRefGoogle Scholar