Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T14:58:29.421Z Has data issue: false hasContentIssue false

Crystallographic studies of plant waxes

Published online by Cambridge University Press:  10 January 2013

Iris Meusel
Affiliation:
Botanisches Institut und Botanischer Garten der Universität Bonn, Meckenheimer Allee 170, D-53115 Bonn, Germany
Wilhelm Barthlott
Affiliation:
Botanisches Institut und Botanischer Garten der Universität Bonn, Meckenheimer Allee 170, D-53115 Bonn, Germany
Hartmut Kutzke
Affiliation:
Mineralogisch-Petrologisches Institut der Universität Bonn, Poppelsdorfer Schloß, D-53115 Bonn, Germany
Bruno Barbier
Affiliation:
Mineralogisch-Petrologisches Institut der Universität Bonn, Poppelsdorfer Schloß, D-53115 Bonn, Germany

Abstract

Plant surfaces are mostly covered with microscopic layers of wax which exhibit characteristic morphologies, visible under high magnification. Waxes belonging to three different types were investigated. Powder data of seven natural and three recrystallised waxes as well as of two isolated compounds are presented. The mainly crystalline nature of the studied plant waxes is proved. The correlation between morphology, chemical composition, and powder patterns is discussed.

Keywords

Type
New Diffraction Data
Copyright
Copyright © Cambridge University Press 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arriaga-Giner, F. J., Rullkötter, J., Peakman, T. M., and Wollenweber, E. (1991). “New triterpenes from the frond exudate of the Fern Notholaena rigida,” Z. Naturforsch. C 46, 507512.CrossRefGoogle Scholar
Baker, E. A. (1982). “Chemistry and morphology of plant epicuticular waxes,” in The Plant Cuticle, edited by D. F. Cutler, K. L. Alvin, and C. E. Price (Academic, London), pp. 139–166.Google Scholar
Barthlott, W. (1990). “Scanning electron microscopy of the epidermal surface in plants,” in Scanning Electron Microscopy in Taxonomy and Functional Morphology, edited by D. Claugher (Clarendon, Oxford), Systematics Association Special Vol. 41, pp. 69–94.Google Scholar
Barthlott, W. (1993). “Epicuticular wax ultrastructure and systematics,” in Evolution and Systematics of the Caryophyllales, edited by H. D. Behnke and T. J. Mabry (Springer, Berlin), pp. 75–86.Google Scholar
Barthlott, W., Cutler, D. F., Ditsch, F., Meusel, I., Neinhuis, C., Theisen, I., and Wilhelmi, H. (1998). “Classification and terminology of plant epicuticular waxes,” Botanical J. the Linnean Society 126, 237260.CrossRefGoogle Scholar
Basson, I., and Reynhardt, E. C. (1988a). “An investigation of the structures and molecular dynamics of natural waxes. I. Beeswax,” J. Phys. D: Appl. Phys. 21, 14211428.CrossRefGoogle Scholar
Basson, I., and Reynhardt, E. C. (1988b). “An investigation of the structure and molecular dynamics of natural waxes. II. Carnauba wax,” J. Phys. D: Appl. Phys. 21, 14291433.CrossRefGoogle Scholar
Basson, I., and Reynhardt, E. C. (1988c). “An investigation of the structures and molecular dynamics of natural waxes. III. Montan wax,” J. Phys. D: Appl. Phys. 21, 14341437.CrossRefGoogle Scholar
Bianchi, G. (1995). “Plant waxes,” in Waxes: Chemistry, Molecular Biology and Functions, edited by R. J. Hamilton (The Oily Press, Glasgow), pp. 175–222.Google Scholar
Chibnall, A. C., Piper, S. H., Mangouri, H. A. E., Williams, E. F., and Iyengar, A. V. V. (1937). “CCXLIV. The wax from the leaves of sandal (Santalum album),” Biochem. J. 31, 19811986.CrossRefGoogle Scholar
Chickakli, M., and Jessen, F. W. (1967). “Crystal morphology in hydrocarbon systems,” Industrial and Engineering Chemistry 59, 8698.CrossRefGoogle Scholar
Cutler, D. F., and Brandham, P. E. (1977). “Experimental evidence for the genetic control of leaf surface characters in hybrid Aloineae (Liliaceae),” Kew Bulletin 32, 2332.CrossRefGoogle Scholar
de Bary, A. (1871). “Ueber die Wachsüberzüge der Epidermis,” Botanische Zeitschrift 29, 128139, 29, 145–154, 29, 161–176, 29 566–571, 29 573–585, 29 605–619.Google Scholar
Dorset, D. L. (1983). “Electron crystallography of alkyl chain lipids; identification of long-chain packing,” Ultramicroscopy 12, 1928.CrossRefGoogle Scholar
Dorset, D. L. (1987). “Role of symmetry in the formation of n-paraffin solid solutions,” Macromolecules 20, 27822788.CrossRefGoogle Scholar
Ensikat, H. J., Neinhuis, C., and Barthlott, W. (2000)“Direct access to plant epicuticular wax crystals by a new mechanical isolation method,” Int. J. Plant Sci. 161, 143148.CrossRefGoogle ScholarPubMed
Heyding, R. D., Russell, K. E., Varty, T. L., and St-Cyr, D. (1990). “The normal paraffins revisited,” Powder Diffr. 5, 93100.CrossRefGoogle Scholar
Jeffree, C. E. (1986). “The cuticle, epicuticular waxes and trichomes of plants, with reference to their structure, functions and evolution,” in Insects and the Plant Surface, edited by B. E. Juniper and Sir R. Southwood (Edward Arnold, London), pp. 23–63.Google Scholar
Jetter, R., and Riederer, M. (1994). “Epicuticular crystals of nonacosan-10-ol: In-vitro reconstitution and factors influencing crystal habits,” Planta 195, 257270.CrossRefGoogle Scholar
Jetter, R., and Riederer, M. (1995). “In vitro reconstitution of epicuticular wax crystals: Formation of tubular aggregates by long chain secondary alkanediols,” Botanica Acta 108, 111120.CrossRefGoogle Scholar
Kreger, D. R. (1948). “An x-ray study of waxy coating from plants,” Rec. Trav. botaniques Neerlandais 42, 606736.Google Scholar
Kreger, D. R. (1958). “Wax,” in Handbuch der Pflanzenphysiologie, edited by W. Ruhland (Springer, Berlin), Vol. 10, pp. 249–269.Google Scholar
Kreger, D. R., and Schamhart, C. (1956). “On the long crystal-spacings in wax esters and their value in micro-analysis of plant cuticle waxes,” Biochim. Biophys. Acta 19, 2244.CrossRefGoogle Scholar
Lewtas, K., Tack, R. D., Beiny, D. H. M., and Mullin, J. W. (1991). “Wax crystallisation in diesel fuel: Habit modification and the growth of n-alkane crystals,” in Advances in Industrial Crystallization, edited by J. Garside, R. J. Davey, and A. G. Jones (Butterworth Heinemann, Oxford), pp. 166–179.Google Scholar
Meusel, I. (1997). “Mikromorphologie, Chemie und in-vitro-Kristallisation epicuticularer Wachse und ihre Anwendung in der Systematik,” Ph.D. thesis, University Bonn.Google Scholar
Meusel, I., Neinhuis, C., Markstädter, C., and Barthlott, W. (1999). “Ultrastructure, chemical composition and recrystallisation of epicuticular waxes: Transversely ridged rodlets,” Can. J. Bot. 77, 706720.Google Scholar
Nyburg, S. C., and Potworwski, J. W. (1973). “Prediction of units cells and atomic coordinates for n-alkanes,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 29, 347352.CrossRefGoogle Scholar
Piper, S. H., Chibnall, S. H., and Williams, E. F. (1934). “CCLXXXVI. Melting-points and long crystal spacings of the higher primary alcohols and n-fatty acids,” Biochem. J. 28, 21752188.CrossRefGoogle ScholarPubMed
Riederer, M., and Markstädter, C., (1996). “Cuticular waxes: A critical assessment of current knowledge,” in Plant Cuticle—an Integrated Functional Approach, edited by G. Kerstiens (BIOS Scientific, Oxford), pp. 189–200.Google Scholar
Scheele, C., Wollenweber, E., and Arriaga-Giner, F. J. (1987). “New flavonoids from cheilanthoid ferns,” J. Natural Products 50, 181187.CrossRefGoogle Scholar
Schmalle, H. W., Adiwidjaja, G., Jarchow, O. H., Hausen, B. M., and Wollenweber, E. (1990). “Structure of 2,6-Dihydroxy-4,4-dimethoxychalcone,” Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 46, 17121715.CrossRefGoogle Scholar
Sprengel, C. K. (1793). Das Entdeckte Geheimnis der Natur (Friedrich dem Aelteren, Berlin).Google Scholar
Uloth, W. (1867). “Ueber Wachsbildungen im Pflanzenreich,” Flora 25, 385392; (1869) Flora 27, 417–425, Table 7.Google Scholar
Walton, T. J. (1990). “Waxes, cutin and suberin,” in Lipids, Membranes and Aspects of Photobiology, edited by J. L. Harwood, and J. R. Bowyer (Academic, London), Vol. 4, pp. 105–158.Google Scholar
Wiesner, J. (1876). “Ueber die krystallinische Beschaffenheit der geformten Wachsüberzüge pflanzlicher Oberhäute,” Bot. Zeitg. 15, 225236.Google Scholar
Wollenweber, E. (1974). “Die Verbreitung spezifischer Flavone in der Gattung Primula,” Biochem. Physiol. Pflanzen 166, 419424.CrossRefGoogle Scholar
Wollenweber, E. (1976). “Flavonoide Exkrete bei Goldfarnen und Silberfarnen,” Z. Pflanzenphysiol. 78, 344349.CrossRefGoogle Scholar
Wollenweber, E. (1978). “The distribution and chemical constituents of the farinose exudates in gymnogrammoid ferns,” Am. Fern J. 68, 1328.CrossRefGoogle Scholar
Wollenweber, E., and Schnepf, E. (1970). “Vergleichende Untersuchungen über die flavonoiden Exkrete von ‘Mehl’-und ‘Ol’-Drüsen bei Primeln und die Feinstruktur der Drüsenzellen,” Z. Pflanzenphysiol. 62, 216227.Google Scholar