Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T10:10:15.043Z Has data issue: false hasContentIssue false

Crystalline microstructure of boehmites studied by multi-peak analysis of powder X-ray diffraction patterns

Published online by Cambridge University Press:  23 June 2017

Pablo Pardo
Affiliation:
Department of Inorganic Chemistry, University of Valencia, Valencia, Spain
Marek Andrzej Kojdecki*
Affiliation:
Institute of Mathematics and Cryptology, Military University of Technology, Warsaw, Poland
José Miguel Calatayud
Affiliation:
Department of Inorganic Chemistry, University of Valencia, Valencia, Spain
José María Amigó
Affiliation:
Department of Geology, University of Valencia, Valencia, Spain
Javier Alarcón
Affiliation:
Department of Inorganic Chemistry, University of Valencia, Valencia, Spain
*
a)Author to whom correspondence should be addressed. Electronic mail: m_kojdecki@poczta.onet.pl or Marek.Kojdecki@wat.edu.pl

Abstract

Nanocrystalline boehmite (gamma-aluminium-oxyhydroxide) is a material of industrial importance, the functionality of which follows from its crystalline microstructure. A procedure for preparing boehmite nanoparticles, comprising the formation of a precipitate by the alkalization of an aqueous solution of aluminium nitrate and subsequent hydrothermal aging, was previously elaborated. The application of an additive (maltitol or tartaric acid) to control the sizes and shapes of crystallites in the produced polycrystalline powder of boehmite was developed. The aim of this work is a study of the effect of the hydrothermal treatment time on nanocrystalline characteristics of boehmite, both in absence and in presence of the additive. The obtained materials were investigated by using X-ray diffraction (XRD) as principal technique and additionally by scanning and transmission electron microscopy. The multi-peak analysis of powder XRD patterns was applied to determine the prevalent crystallite shape, volume-weighted crystallite size distribution, and second-order crystalline lattice strain distribution being principal quantitative characteristics of the crystalline microstructure. Based on these characteristics, three types of the microstructure correlated with the production procedures were observed and discussed in detail. The nanoparticles of boehmites were found to be monocrystalline grains with characteristic habits and sizes of order of ten nanometers weakly dependent on the hydrothermal treatment time.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amoura, M., Nassif, N., Roux, C., Livage, J., and Coradin, T. (2007). “Sol-gel encapsulation of cells is not limited to silica: long-term viability of bacteria in alumina matrices,” Chem. Commun. 39, 40154017.Google Scholar
Auxilio, A. R., Andrews, P. C., Junk, P. C., Spiccia, L., Neumann, D., Raverty, W., Vanderhoek, N., and Pringle, J. M. (2008). “Functionalised pseudo-boehmite nanoparticles as an excellent adsorbent material for anionic dyes,” J. Mater. Chem. 18, 24662474.CrossRefGoogle Scholar
Bai, X., Caputo, G., Hao, Z. D., Freitas, V. T., Zhang, J. H., Longo, R. L., Malta, O. L., Ferreira, R. A. S., and Pinna, N. (2014). “Efficient and tuneable photoluminescent boehmite hybrid nanoplates lacking metal activator centres for single-phase white LEDs,” Nat. Commun. 5, 5702, 18.Google Scholar
Bokhimi, X., Toledo-Antonio, J. A., Guzman-Castillo, M. L., Mar-Mar, B., Hernandez-Beltran, F., and Navarrete, J. (2001a). “Dependence of boehmite thermal evolution on its atom bond lengths and crystallite size,” J. Solid State Chem. 161, 319326.Google Scholar
Bokhimi, X., Toledo-Antonio, J. A., Guzman-Castillo, M. L., and Hernandez-Beltran, F. (2001b). “Relationship between crystallite size and bond lengths in boehmite,” J. Solid State Chem. 159, 3240.Google Scholar
Bokhimi, X., Sanchez-Valente, J., and Pedraza, F. (2002). “Crystallization of sol-gel boehmite via hydrothermal annealing,” J. Solid State Chem. 166, 182190.CrossRefGoogle Scholar
Brühne, S., Gottlieb, S., Assmus, W., Alig, E., and Schmidt, M. U. (2008). “Atomic structure analysis of nanocrystalline boehmite AlO(OH),” Cryst. Growth Des. 8, 489493.Google Scholar
Cai, W. Q., Yu, J. G., Cheng, B., Su, B. L., and Jaroniec, M. (2009). “Synthesis of boehmite hollow core/shell and hollow microspheres via sodium tartrate-mediated phase transformation and their enhanced adsorption performance in water treatment,” J. Phys. Chem. C 113, 1473914746.CrossRefGoogle Scholar
Cai, W. Q., Yu, J. G., Gu, S. H., and Jaroniec, M. (2010). “Facile hydrothermal synthesis of hierarchical boehmite: sulfate-mediated transformation from nanoflakes to hollow microspheres,” Cryst. Growth Des. 10, 39773982.Google Scholar
Chen, X. Y., Zhang, Z. H., Li, X. L., and Lee, S. W. (2008). “Controlled hydrothermal synthesis of colloidal boehmite (gamma-AlOOH) nanorods and nanoflakes and their conversion into gamma-Al2O3 nanocrystals,” Solid State Commun. 145, 368373.Google Scholar
Chen, Y. T., Santos, A., Wang, Y., Kumeria, T., Li, J. S., Wang, C. H., and Losic, D. (2015a). “Biomimetic nanoporous anodic alumina distributed bragg reflectors in the form of films and microsized particles for sensing applications,” ACS Appl. Mat. Interfaces 7, 1981619824.Google Scholar
Chen, Y. T., Santos, A., Wang, Y., Kumeria, T., Wang, C. H., Li, J. S., and Losic, D. (2015b). “Interferometric nanoporous anodic alumina photonic coatings for optical sensing,” Nanoscale 7, 77707779.CrossRefGoogle ScholarPubMed
Chen, Y. T., Santos, A., Wang, Y., Kumeria, T., Ho, D. N., Li, J. S., Wang, C. H., and Losic, D. (2015c). “Rational design of photonic dust from nanoporous anodic alumina films: a versatile photonic nanotool for visual sensing,” Sci. Rep. 5.Google Scholar
Chiche, D., Digne, M., Revel, R., Chaneac, C., and Jolivet, J. P. (2008). “Accurate determination of oxide nanoparticle size and shape based on X-ray powder pattern simulation: application to boehmite AlOOH,” J. Phys. Chem. C 112, 85248533.Google Scholar
Chiche, D., Chizallet, C., Durupthy, O., Channeac, C., Revel, R., Raybaud, P., and Jolivet, J. P. (2009). “Growth of boehmite particles in the presence of xylitol: morphology oriented by the nest effect of hydrogen bonding,” Phys. Chem. Chem. Phys. 11, 1131011323.Google Scholar
Chiche, D., Chaneac, C., Revel, R., and Jolivet, J. P. (2011). “Use of polyols as particle size and shape controllers: application to boehmite synthesis from sol-gel routes,” Phys. Chem. Chem. Phys. 13, 62416248.Google Scholar
Corma, A. and Fornes, V. (1990). “Cracking of N-Heptane on fluorinated gamma-alumina catalysts in the presence of hydrogen – catalytic activity and nature of acid active-sites,” Appl. Catal. A-Gen. 61, 175185.CrossRefGoogle Scholar
Dash, B., Tripathy, B. C., Bhattacharya, I. N., and Mishra, B. K. (2010). “Additive action on boehmite precipitation in sodium aluminate solution,” Dalton Trans. 39, 91089111.Google Scholar
Delgado-Pinar, E., Frias, J. C., Jimenez-Borreguero, L. J., Albelda, M. T., Alarcon, J., and Garcia-Espana, E. (2007). “One-pot preparation of surface modified boehmite nanoparticles with rare-earth cyclen complexes,” Chem. Commun. 32, 33923394.Google Scholar
Delgado-Pinar, E., Albelda, M. T., Frias, J. C., Barreiro, O., Tejera, E., Kubicek, V., Jimenez-Borreguero, L. J., Sanchez-Madrid, F., Toth, E., Alarcón, J., and Garcia-Espana, E. (2011). “Lanthanide complexes as imaging agents anchored on nano-sized particles of boehmite,” Dalton Trans. 40, 64516457.Google Scholar
Delgado-Pinar, E., Rotger, C., Costa, A., Pina, M. N., Jimenez, H. R., Alarcón, J., and Garcia-Espana, E. (2012). “Grafted squaramide monoamine nanoparticles as simple systems for sulfate recognition in pure water,” Chem. Commun. 48, 26092611.Google Scholar
Digne, M., Sautet, P., Raybaud, P., Toulhoat, H., and Artacho, E. (2002). “Structure and stability of aluminum hydroxides: a theoretical study,” J. Phys. Chem. B 106, 51555162.Google Scholar
Digne, M., Revel, R., Boualleg, M., Chiche, D., Rebours, B., Moreaud, M., Celse, B., Chaneac, C., and Jolivet, J. P. (2010). “Innovative characterizations and morphology control of gamma-AlOOH boehmite nanoparticles: towards advanced tuning of gamma-Al2O3 catalyst properties,” Proceedings of the 10th International Symposium on Scientific Bases for the Preparation of Heterogeneous Catalysts 175, 127134.Google Scholar
Eberl, D. D., Srodon, J., Kralik, M., Taylor, B. E., and Peterman, Z. E. (1990). “Ostwald ripening of clays and metamorphic minerals,” Science 248, 474477.Google Scholar
Edelman, R. (1980). “Vaccine adjuvants,” Rev. Infect. Dis. 2, 370383.Google Scholar
Edelman, R. (2001). “The development and use of vaccine adjuvants,” Mol. Biotechnol. 21, 129148.CrossRefGoogle Scholar
Guzman-Castillo, M. L., Bokhimi, X., Toledo-Antonio, A., Salmones-Blasquez, J., and Hernandez-Beltran, F. (2001). “Effect of boehmite crystallite size and steaming on alumina properties,” J. Phys. Chem. B 105, 20992106.Google Scholar
He, T. B., Xiang, L., and Zhu, S. L. (2009). “Different nanostructures of boehmite fabricated by hydrothermal process: effects of pH and anions,” Crystengcomm 11, 13381342.Google Scholar
Iggland, M. and Mazzotti, M. (2012). “Population balance modeling with size-dependent solubility: ostwald ripening,” Cryst. Growth Des. 12, 14891500.CrossRefGoogle Scholar
Jolivet, J. P., Froidefond, C., Pottier, A., Chaneac, C., Cassaignon, S., Tronc, E., and Euzen, P. (2004). “Size tailoring of oxide nanoparticles by precipitation in aqueous medium. A semi-quantitative modelling,” J. Mater. Chem. 14, 32813288.Google Scholar
Jolivet, J. P., Cassaignon, S., Chaneac, C., Chiche, D., and Tronc, E. (2008). “Design of oxide nanoparticles by aqueous chemistry,” J. Sol-Gel Sci. Technol. 46, 299305.Google Scholar
Kaya, C., He, J. Y., Gu, X., and Butler, E. G. (2002). Nanostructured ceramic powders by hydrothermal synthesis and their applications,” Microporous Mesoporous Mat. 54, 3749.Google Scholar
Kojdecki, M. A. (2000). “New criterion of regularisation parameter choice in Tikhonov's method,” Biul. Mil. Univ. Technol. XLIX(1), 47126.Google Scholar
Kojdecki, M. A., de Sola, E. R., Serrano, F. J., Delgado-Pinar, E., Reventós, M. M., Esteve, V. J., Amigó, J. M., and Alarcón, J. (2007). “Microstructural evolution of mullites produced from single-phase gels,” J. Appl. Crystallogr. 40, 260276.Google Scholar
Kojdecki, M. A., de Sola, E. R., Serrano, F. J., Amigó, J. M., and Alarcón, J. (2009). “Comparative X-ray diffraction study of the crystalline microstructure of tetragonal and monoclinic vanadium-zirconium dioxide solid solutions produced from gel precursors,” J. Appl. Crystallogr. 42, 198210.CrossRefGoogle Scholar
Krokidis, X., Raybaud, P., Gobichon, A. E., Rebours, B., Euzen, P., and Toulhoat, H. (2001). “Theoretical study of the dehydration process of boehmite to gamma-alumina,” J. Phys. Chem. B 105, 51215130.Google Scholar
Langford, J. I. (1978). “Rapid method for analyzing breadths of diffraction and spectral-lines using voigt function,” J. Appl.Crystallogr. 11, 1014.Google Scholar
Lock, N., Hald, P., Christensen, M., Birkedal, H., and Iversen, B. B. (2010). “Continuous flow supercritical water synthesis and crystallographic characterization of anisotropic boehmite nanoparticles,” J. Appl. Crystallogr. 43, 858866.Google Scholar
Mathieu, Y., Lebeau, B., and Valtchev, V. (2007). “Control of the morphology and particle size of boehmite nanoparticles synthesized under hydrothermal conditions,” Langmuir 23, 94359442.CrossRefGoogle ScholarPubMed
Moreaud, M., Jeulin, D., Morard, V., and Revel, R. (2012). “TEM image analysis and modelling: application to boehmite nanoparticles,” J. Microsc. 245, 186199.CrossRefGoogle ScholarPubMed
Nguefack, M., Popa, A. F., Rossignol, S., and Kappenstein, C. (2003). “Preparation of alumina through a sol-gel process. Synthesis, characterization, thermal evolution and model of intermediate boehmite,” Phys. Chem. Chem. Phys. 5, 42794289.Google Scholar
Okada, K., Nagashima, T., Kameshima, Y., Yasumori, A., and Tsukada, T. (2002). “Relationship between formation conditions, properties, and crystallite size of boehmite,” J. Colloid Interface Sci. 253, 308314.Google Scholar
Pardo, P., Calatayud, J. M., and Alarcon, J. (2014). “Improvement of boehmite nanoparticles’ aqueous dispersability by controlling their size, shape and crystallinity,” RSC Adv. 4, 4838948398.Google Scholar
Pardo, P., Serrano, F. J., Vallcorba, O., Calatayud, J. M., Amigó, J. M., and Alarcón, J. (2015). “Enhanced lateral to basal surface ratio in boehmite nanoparticles achieved by hydrothermal aging,” Cryst. Growth Des. 15, 35323538.Google Scholar
Price, R. L., Gutwein, L. G., Kaledin, L., Tepper, F., and Webster, T. J. (2003). “Osteoblast function on nanophase alumina materials: influence of chemistry, phase, and topography,” J. Biomed. Mater. Res. Part A 67A, 12841293.Google Scholar
Raybaud, P., Digne, M., Iftimie, R., Wellens, W., Euzen, P., and Toulhoat, H. (2001). “Morphology and surface properties of boehmite (gamma-AlOOH): a density functional theory study,” J. Catal. 201, 236246.Google Scholar
Rutenberg, A., Vinogradov, V. V., and Avnir, D. (2013). “Synthesis and enhanced thermal stability of albumins@alumina: towards injectable sol-gel materials,” Chem. Commun. 49, 56365638.Google Scholar
Sanchez-Valente, J., Bokhimi, X., and Toledo, J. A. (2004). “Synthesis and catalytic properties of nanostructured aluminas obtained by sol-gel method,” Appl. Catal. A-Gen. 264, 175181.Google Scholar
Santos, P. D., Coelho, A. C. V., Santos, H. D., and Kiyohara, P. K. (2009). “Hydrothermal synthesis of well-crystallised boehmite crystals of various shapes,” Mater. Res.-Ibero-am. J. Mater. 12, 437445.Google Scholar
Scherrer, P. (1918). “Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen,” Nachr. Ges. Wiss. Göttingen, 26 Juli, 98100.Google Scholar
Shen, S. C., Ng, W. K., Chia, L. S. O., Dong, Y. C., and Tan, R. B. H. (2012). “Morphology controllable synthesis of nanostructured boehmite and gamma-alumina by facile dry gel conversion,” Cryst. Growth Des. 12, 49874994.Google Scholar
Tettenhorst, R. and Hofmann, D. A. (1980). “Crystal-chemistry of boehmite,” Clays Clay Min. 28, 373380.Google Scholar
Tikhonov, A. N., Goncharsky, A. V., Stepanov, V. V., and Yagola, A. G. (1995). Numerical Methods for the Solution of Ill-posed Problems (Kluwer, Dordrecht).Google Scholar
Webster, T. J., Hellenmeyer, E. L., and Price, R. L. (2005). “Increased osteoblast functions on theta plus delta nanofiber alumina,” Biomaterials 26, 953960.Google Scholar
Wei, Y., Yang, R., Zhang, Y. X., Wang, L., Liu, J. H., and Huang, X. J. (2011). “High adsorptive gamma-AlOOH(boehmite)@SiO2/Fe3O4 porous magnetic microspheres for detection of toxic metal ions in drinking water,” Chem. Commun. 47, 1106211064.Google Scholar
Xia, Y. G., Jiao, X. L., Liu, Y. J., Chen, D. R., Zhang, L., and Qin, Z. H. (2013). “Study of the formation mechanism of boehmite with different morphology upon surface hydroxyls and adsorption of chloride ions,” J. Phys. Chem. C 117, 1527915286.Google Scholar
Yoldas, B. E. (1973). “Hydrolysis of aluminum alkoxides and bayerite conversion,” J. Chem. Technol. Biotechnol. 23, 803809.Google Scholar
Zenobi, M. C., Luengo, C. V., Avena, M. J., and Rueda, E. H. (2010). “An ATR-FTIR study of different phosphonic acids adsorbed onto boehmite,” Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 75, 12831288.Google Scholar
Zhao, H. H., Song, H. L., Miao, Z. C., and Chou, L. J. (2014). “Isobutane dehydrogenation over chromia alumina catalysts prepared from MIL-101: insight into chromium species on activity and selectivity,” J. Energy Chem. 23, 708716.Google Scholar
Supplementary material: PDF

Pardo supplementary material

Pardo supplementary material 1

Download Pardo supplementary material(PDF)
PDF 278.1 KB