Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T00:01:30.693Z Has data issue: false hasContentIssue false

The anion-excess fluorite structure of β-Pb1−xFexF2+x(0.25 ≤ x ≤ 0.27)

Published online by Cambridge University Press:  05 March 2012

A. Le Bail*
Affiliation:
Laboratoire des Oxydes et Fluorures, CNRS UMR 6010, Université du Maine, Ave. O. Messiaen, 72085 Le Mans Cedex 9, France
*
a)Author to whom correspondence should be addressed. Electronic mail: Armel.Le_Bail@univ-lemans.fr

Abstract

The fluorite-related anion-excess β-Pb1−xFexF2+x (0.25 ≤ x ≤ 0.27) orthorhombic crystal structure is approached from powder diffraction data. A 1 × 1 × 2 fluorite supercell is found to describe the main aspects of the structure, which would have ideally the Pb3FeF9 formula (x = 0.25) (space group Cmmm, a = 5.9926(1), b = 5.5781(1), c = 11.5208(3) Å), and would include a complete [FeF4]−1 perovskite plane, orthogonal to the c axis. However, there is large Pb substitution (44%) on the perovskite Fe site as well as Fe substitution (∼25%) on one of the two main Pb sites. A strong relationship with the fully ordered crystal structure of Pb8MnFe2F24, which can be expressed as Pb1−xMxF2+2/3x (x = 0.273), is discussed, suggesting that both phases may have infinite [M3F14] ribbons in common.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bruker, (2010). EVA, version 16 (Computer Software), Bruker AXS Inc., Madison, Wisconsin.Google Scholar
Buchinskaya, I. I. and Fedorov, P. P. (2004). “Lead difluoride and related systems,” Russ. Chem. Rev. 73, 371400.10.1070/RC2004v073n04ABEH000811CrossRefGoogle Scholar
Decap, G., Retoux, R., and Calage, Y. (1993). “Pb3Fe2F12: A new fluorometallate with a tetrameric structural unit,” Z. Anorg. Allg. Chem. 619, 18501856.10.1002/zaac.v619:11CrossRefGoogle Scholar
de Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. 1, 108113.10.1107/S002188986800508XCrossRefGoogle Scholar
Galy, J., Meunier, G., Andersson, S., and Åström, A. (1975). “Stéréochimie des éléments comportant des paires non liées: Ge (II), As (III), Se (IV), Br (V), Sn (II), Sb (III), Te (IV), I (V), Xe (VI), Tl (I), Pb (II), et Bi (III) (oxydes, fluorures et oxyfluorures),” J. Solid State Chem. 13, 142159.10.1016/0022-4596(75)90092-4CrossRefGoogle Scholar
ICDD (2010). PDF-4+2010 (Database), edited by Kabekkodu, S. (International Centre for Diffraction Data, Newton Square, PA).Google Scholar
Ito, Y. and Koto, K. (1983). “Thermal hysteresis of anion disorder in β-PbF2,” Solid State Ionics 9–10, 527530.10.1016/0167-2738(83)90289-8CrossRefGoogle Scholar
Jacoboni, C., Le Bail, A., De Pape, R., and Renard, J. P. (1983). “Physical properties and structure approach of the 3d transition metal fluoride glasses PbF2-MF2-MF3,” Stud. Inorg. Chem. 3, 687690.Google Scholar
Le Bail, A. (2001). “ESPOIR: A program for solving structures by Monte Carlo analysis of powder diffraction data,” Mater. Sci. Forum 378, 6570.10.4028/www.scientific.net/MSF.378-381.65CrossRefGoogle Scholar
Le Bail, A. (2004). “Monte Carlo indexing with McMaille,” Powder Diffr. 19, 249254.10.1154/1.1763152CrossRefGoogle Scholar
Le Bail, A. (2005). “Whole powder pattern decomposition methods and applications—A retrospection,” Powder Diffr. 20, 316326.10.1154/1.2135315CrossRefGoogle Scholar
Le Bail, A. (2008). “Structure solution,” in Principles and Applications of Powder Diffraction, edited by Clearfield, A., Reibenspies, J., and Bhuvanesh, N. (Wiley, New York), pp. 261309.Google Scholar
Le Bail, A. and Mercier, A.-M. (1992a). “Crystal structure of Pb8MnFe2F24,” Eur. J. Solid State Inorg. Chem. 29, 183190.Google Scholar
Le Bail, A. and Mercier, A.-M. (1992b). “Structure of Pb2MnFe2F12•3H2O,” Acta Crystallogr. C48, 239241.10.1107/S0108270191010168Google Scholar
Martineau, C., Fayon, F., Legein, C., Buzaré, J.-Y., Body, M., Massiot, D., and Goutenoire, F. (2008). “Structure determination of β-Pb2ZnF6 by coupling multinuclear solid state NMR, powder XRD and ab initio calculations,” Dalton Trans. 61506158.10.1039/b810863cGoogle Scholar
Ravez, J., Darriet, M., Von der Mühll, R., and Hagenmuller, P. (1971). “Le système PbF2-InF3. Etude comparative des systèmes PbF2-TF3 (T = Al, Ti, V, Cr, Fe, Ga, In),” J. Solid State Chem. 3, 234237.10.1016/0022-4596(71)90033-8CrossRefGoogle Scholar
Ravez, J. and Duale, M. (1970). “Le système PbF2-FeF3,” C.R. Seances Acad. Sci., Ser. C 270, 5658.Google Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 6571.10.1107/S0021889869006558CrossRefGoogle Scholar
Rodriguez-Carvajal, J. (1993). “Recent advances in magnetic-structure determination by neutron powder diffraction,” Physica B 192, 5569.10.1016/0921-4526(93)90108-ICrossRefGoogle Scholar
Senegas, J., Mikou, A., Laval, J. P., and Frit, B. (1987). “Etude par RMN du 19F de la mobilité anionique dans la solution solide de type fluorine Pb1-xInxF2+x et dans la phase ordonnée Pb2InF7,” J. Fluorine Chem. 37, 6784.10.1016/S0022-1139(00)83088-2CrossRefGoogle Scholar
Smith, G. S. and Snyder, R. L. (1979). “F N: A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. 12, 6065.10.1107/S002188987901178XCrossRefGoogle Scholar