Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T11:29:26.186Z Has data issue: false hasContentIssue false

Synthesis and X-ray powder diffraction data of cis-4-(4-methoxyphenyl)-3-methyl-6-nitro-2-phenyl-1,2,3,4-tetrahydroquinoline

Published online by Cambridge University Press:  10 September 2013

M.A. Macías*
Affiliation:
Grupo de Investigación en Química Estructural (GIQUE), Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, A.A. 678, Carrera 27, Calle 9 Ciudadela Universitaria, Bucaramanga, Colombia
J.A. Henao
Affiliation:
Grupo de Investigación en Química Estructural (GIQUE), Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, A.A. 678, Carrera 27, Calle 9 Ciudadela Universitaria, Bucaramanga, Colombia
Arnold R. Romero Bohórquez
Affiliation:
Laboratorio de Química Orgánica y Biomolecular (LQOBio), Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, A.A. 678, Carrera 27, Calle 9 Ciudadela Universitaria, Bucaramanga, Colombia
Vladimir V. Kouznetsov
Affiliation:
Laboratorio de Química Orgánica y Biomolecular (LQOBio), Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, A.A. 678, Carrera 27, Calle 9 Ciudadela Universitaria, Bucaramanga, Colombia
*
a) Author to whom correspondence should be addressed. Electronic mail: mariomacias@ciencias.uis.edu.co

Abstract

The 2,4-diaryl 1,2,3,4-tetrahydroquinoline derivative (1), described in the title (Chemical formula: C23H22N2O3), was synthesized via the “one-pot” three-component imino Diels–Alder reaction catalyzed by Cu(OTf)2. Molecular characterization was performed by 1H and 13C NMR, Fourier transform-infrared, and gas chromatography-mass spectrometry. The X-ray powder diffraction pattern for the title compound was analyzed and found to be crystallized in an orthorhombic system with space group P212121 (No. 19) and refined unit-cell parameters a = 8.6415(8) Å, b = 12.679(2) Å, c = 17.601(2) Å, and V = 1928.4(2) Å3.

Type
New Diffraction Data
Copyright
Copyright © International Centre for Diffraction Data 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bendale, P., Olepu, S., Kumar, S. P., Buldule, V., Rivas, K., Nallan, L., Smart, B., Yokoyama, K., Ankala, S., Pendyala, P. R., Floyd, D., Lombardo, L. J., Williams, D. K., Buckner, F. S., Chakrabarti, D., Verlinde, C. L. M. J., Van Voorhis, W. C., and Gelb, M. H. (2007). “Second generation tetrahydroquinoline-based protein farnesyltransferase inhibitors as antimalarials,” J. Med. Chem. 50, 45854605.Google Scholar
Boultif, A. and Louër, D. (2006). “Indexing of powder diffraction patterns of low symmetry lattices by successive dichotomy method,” J. Appl. Crystallogr. 37, 724731.Google Scholar
Buhrke, V., Jenkins, R., and Smith, D. (1998). Preparation of Specimens for X-ray Fluorescence and X-ray Diffraction Analysis (Wiley, New York), pp. 141142.Google Scholar
Buonora, P., Olsen, J-C., and Oh, T. (2001). “Recent developments in imino Diels–Alder reactions,” Tetrahedron. 57, 60996138.Google Scholar
Calhoun, W., Carlson, R. P., Crossley, R., Datko, L. J., Dietrich, S., Heatherington, K., Marshall, L. A., Meade, P. J., Opalko, A., and Shepherd, R. G. (1995). “Synthesis and antiinflammatory activity of certain 5,6,7,8-tetrahydroquinolines and related compounds,” J. Med. Chem. 38, 14731481.Google Scholar
Chen, W., Lin, Z., Ning, M., Yang, C., Yan, X., Xie, Y., Shen, X., and Wang, M. W. (2007). “Aza analogues of equol: novel ligands for estrogen receptor beta,” Bioorg. Med. Chem. 15, 58285836.Google Scholar
de Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern,” J. Appl. Crystallogr. 1, 108113.Google Scholar
Dong, C. (1999). “PowderX: Windows-95-based program for poder X-ray diffraction data processing,” J. Appl. Crystallogr. 32, 838–838.Google Scholar
Glushkov, V. A., and Tolstikov, A. G. (2008). “Synthesis of substituted 1,2,3,4-tetrahydroquinones by the Povarov reaction. New potentials of the classical reaction,” Russ. Chem. Rev. (Engl. Transl.) 77, 137159.Google Scholar
He, L., Bekkaye, M., Retailleau, P., and Masson, G. (2012). “Chiral phosphoric acid catalyzed inverse electron-demand aza-Diels–Alder reaction of isoeugenol derivatives,” Org. Lett. 14, 31583161.Google Scholar
Katritzky, A. R., Rachwal, S., and Rachwal, B. (1996). “Recent progress in the synthesis of 1,2,3,4 tetrahydroquinolines,” Tetrahedron. 52, 1503115070.Google Scholar
Kouznetsov, V. V. (2009). “Recent synthetic developments in a powerful imino Diels–Alder reaction (Povarov Reaction): application to the synthesis of N-polyheterocycles and related alkaloids,” Tetrahedron 65, 27212750.Google Scholar
Kouznetsov, V. V., Palma, A., Ewert, C., and Varlamov, A. (1998). “Some aspects of reduced quinoline chemistry,” J. Heterocycl. Chem. 35, 761785.Google Scholar
Kouznetsov, V. V., Romero Bohórquez, A. R., and Stashenko, E. E., (2007). “Three-component imino Diels–Alder reaction with essential oil and seeds of anise: generation of new tetrahydroquinolines,” Tetrahedron Lett. 48, 88558860.Google Scholar
Kouznetsov, V. V., Merchan, A. D., and Romero, B. A. R. (2008). “PEG-400 as green reaction medium for Lewis acid-promoted cycloaddition reactions with isoeugenol and anethole,” Tetrahedron Lett. 49, 30973100.Google Scholar
Laugier, J. and Bochu, B. (2002). CHEKCELL. “LMGP-Suite Suite of Programs for the interpretation of X-ray. Experiments,” ENSP/Laboratoire des Matériaux et du Génie Physique, BP 46. 38042 Saint Martin d'Hères, France. http://www.inpg.fr/LMGP and http://www.ccp14.ac.uk/tutorial/lmgp/.Google Scholar
Miguell, A. D., Hubberd, C. R., and Stalick, J. K. (1981). “NBS* AIDS80: A FORTRAN program for crystallographic data evaluation,” National Bureau of Standards (USA), Tech. Note 1141.Google Scholar
Rachinger, W. A. (1948). “A correction for the α 1 α 2 doublet in the measurement of widths of X-ray diffraction lines,” J. Sci. Instrum. 25, 254.Google Scholar
Romero Bohórquez, A. R., Kouznetsov, V. V., and Doyle, M. P. (2011). “ Cu(OTf) 2 -Catalyzed three-component imino Diels–Alder reaction using propenylbenzenes: synthesis of 2,4-diaryl tetrahydroquinoline derivatives,” Lett. Org. Chem. 8, 511.Google Scholar
Romero Bohórquez, A. R., Escobar, P., Leal, S. M., and Kouznetsov, V. V. (2012). “ In vitro activity against Trypanosoma cruzi and Leishmania chagasi Parasites of 2,4-Diaryl 1,2,3,4-Tetrahydroquinoline derivatives,” Lett. Drug Des. Discov. 9, 802808.Google Scholar
Saviztky, A. and Golay, M. J. (1964). “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36, 16271639.Google Scholar
Smith, G. S. and Snyder, R. L. (1979). “ F N : a criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. 12, 6065.Google Scholar
Sonneveld, E. J. and Visser, J. W. (1975). “Automatic collection of powder diffraction data from photographs,” J. Appl. Crystallogr. 8, 17.Google Scholar
Sridharan, V., Suryavanshi, P. A. and Menéndez, J. C. (2011). “Advances in the chemistry of tetrahydroquinolines,” Chem. Rev. 111, 71577259.Google Scholar
Wallace, O. B., Lauwers, K. S., Jones, S. A. and Dodge, J. A. (2003). “Tetrahydroquinoline-based selective estrogen receptor modulators (SERMs),” Bioorg. Med. Chem. Lett. 13, 19071910.Google Scholar