Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T01:51:12.907Z Has data issue: false hasContentIssue false

Study of calcium oxalate monohydrate of kidney stones by X-ray diffraction

Published online by Cambridge University Press:  06 March 2012

M. T. D. Orlando
Affiliation:
Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari 514, 29075-910 Vitória, Espírito Santo, Brasil
L. Kuplich
Affiliation:
Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari 514, 29075-910 Vitória, Espírito Santo, Brasil
D. O. de Souza
Affiliation:
Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari 514, 29075-910 Vitória, Espírito Santo, Brasil
H. Belich
Affiliation:
Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari 514, 29075-910 Vitória, Espírito Santo, Brasil
J. B. Depianti
Affiliation:
Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari 514, 29075-910 Vitória, Espírito Santo, Brasil
C. G. P. Orlando
Affiliation:
Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari 514, 29075-910 Vitória, Espírito Santo, Brasil
E. F. Medeiros
Affiliation:
Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari 514, 29075-910 Vitória, Espírito Santo, Brasil
P. C. M. da Cruz
Affiliation:
Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari 514, 29075-910 Vitória, Espírito Santo, Brasil
L. G. Martinez
Affiliation:
Instituto de Pesquisas Energéticas e Nucleares (IPEN), Campus Universidade de São Paulo (USP), 05508-900 São Paulo, São Paulo, Brasil
H. P. S. Corrêa
Affiliation:
Universidade Federal de Mato Grosso do Sul (UFMS), 79070-900 Campo Grande, Mato Grosso do Sul, Brasil
R. Ortiz
Affiliation:
Escola de Artes, Ciências e Humanidades (EACH), Universidade de São Paulo (USP), Avenue Arlindo Bettio 1000, 03828-000 São Paulo, São Paulo, Brasil

Abstract

X-ray powder diffraction was used to study the phase composition of human renal calculi. The stones were collected from 56 donors in Vitória, Espírito Santo state, southeastern Brazil. An XRD phase quantification revealed that 61% of the studied renal stones were composed exclusively of calcium oxalate [34% formed only by calcium oxalate monohydrate (COM) and 27% presents both monohydrate and dihydratate calcium oxalate]. The 39% multi-composed calculi have various other phases such as uric acid and calcium phosphate. Rietveld refinement of XRD data of one apparent monophasic (COM) renal calculus revealed the presence of a small amount of hydroxyapatite. The presence of this second phase and the morphology of the stone (ellipsoidal) indicated that this calculus can be classified as non-papillary type and its nucleation process developed in closed kidney cavities. In order to show some advantages of the X-ray powder diffraction technique, a study of the phase transformation of monohydrate calcium oxalate into calcium carbonate (CaCO3) was carried out by annealing of a monophasic COM calculi at 200, 300, and 400 °C for 48 h in a N2 gas atmosphere. The results of the XRD for the heat treated samples is in good agreement with the thermogravimetric analysis found in the literature and shows that X-ray powder diffraction can be used as a suitable technique to study the composition and phase diagram of renal calculi.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ansari, M.S., Gupta, N.P., Hemal, A.K., Dogra, P.N., Seth, A., Aron, M., and Singh, T.P. (2005). “Spectrum of stone composition: Structural analysis of 1050 upper urinary tract calculi from northern India,” Int. J. Urol.ZZZZZZ 12, 1216. 83p, ZZZZZZ Google Scholar
Asokan, D., Kalaiselvi, P., Farooq, S.M., and Varalakshmi, P. (2004). “Calcium oxalate monohydrate binding protein: A diagnostic biomarker for calcium oxalate kidney stone formers,” Urol. Res. 32, 357361.CrossRefGoogle ScholarPubMed
Azevedo, N. (2002). “Estudos sobre pedras de rins através da técnica de Difração de Raios X de pó,” Ph.D thesis, Departamento de Química, Universidade Federal do Espírito Santo, Vitória, Brazil (in Portuguese).Google Scholar
Bellanato, J., Delatte, L.C., Hidalgo, A., and Santos, M. (1973). “Application of infrared spectroscopy to the study of renal stones,” in Urinary Calculi: Recent Advances in Aetiology, Stone Structure and Treatment: Proceedings of the International Symposium on Renal Stone Research, edited by Delatte, L. C. , Rapado, A. , and Hodgkinson, A. (S. Karger AG, Basel, Switzerland), pp. 237–246.Google Scholar
Coe, F.L., Parks, J.H., and Asplin, J.R. (1992). “The pathogenesis and treatment of kidney stones,” N. Engl. J. Med.NEJMAG 327, 11411152. nej, NEJMAG CrossRefGoogle ScholarPubMed
Elliot, J.S. (1973). “Structure and composition of urinary calculi,” J. Urol. (Baltimore)JOURAA 109, 8283. jur, JOURAA Google ScholarPubMed
Ferreira, F.F., Granado, E., Carvalho, W. Jr., Kycia, S.W., Bruno, D., and Droppa, R. Jr (2006). “X-ray powder diffraction beamline at D10B of LNLS: Application to the Ba2FeReO6 double perovskite,” J. Synchrotron Radiat.JSYRES 13, 4653. jsy, JSYRES CrossRefGoogle Scholar
FIZ and NIST (2006). “Inorganic Crystal Structure Database (ICSD),” version 2006–02. Fachinformationszentrum Karlsruhe (FIZ), Karlsruhe, Germany and the National Institute of Standards and Technology (NIST), Gaithersburg, Maryland.Google Scholar
Gibson, R.I. (1974). “Descriptive human pathological mineralogy,” Am. Mineral.AMMIAY 59, 11771182. amn, AMMIAY Google Scholar
Giles, C., Yokaichiya, F., Kycia, S.W., Sampaio, L.C., Ardiles-Saravia, D.C., Franco, M.K. K., and Neuenschwander, R.T. (2003). “High-resolution X-ray diffraction beamline at the LNLS for the study of charge, orbital, and magnetic structures,” J. Synchrotron Radiat.JSYRES 10, 430434. jsy, JSYRES Google Scholar
Grases, F., Costa-Bauzá, A., and García-Ferragut, L. (1998). “Biopathological crystallization: A general view about mechanisms of renal stone formation,” Adv. Colloid Interface Sci.ACISB9 74, 169194. avi, ACISB9 Google Scholar
Hodgkinson, A. (1971). “A combined qualitative and quantitative procedure for the chemical analysis of urinary calculi,” J. Clin. Pathol.JCPAAK 24, 147151. 59s, JCPAAK CrossRefGoogle ScholarPubMed
ICDD (2005). “Powder Diffraction File,” International Centre for Diffraction Data, edited by McClune, W. F., Newtown Square, PA, 19073–3272.Google Scholar
Kaloustian, J., El-Moselhy, T.F., and Portugal, H. (2003). “Determination of calcium oxalate (mono- and dihydrate) in mixtures with magnesium ammonium phosphate or uric acid: The use of simultaneous thermal analysis in urinary calculi,” Clin. Chim. ActaCCATAR 334, 117129. 463, CCATAR CrossRefGoogle ScholarPubMed
Kaloustian, J., Pauli, A.M., Pieroni, G., and Portugal, H. (2002). “Use of thermal analysis in determination of some urinary calculi of calcium oxalate,” J. Therm Anal. Calorim.JTACF7 70, 959973. aoy, JTACF7 Google Scholar
Koide, T., Oka, T., Tanaka, M., and Sooda, T. (1986). “Urinary tract stone disease in modern Japan,” Eur. Urol.EUURAV 12, 403407. 4lm, EUURAV CrossRefGoogle ScholarPubMed
Kuplich, L. (2004). “Estudos sobre o CaC2O4⋅H2O presente em pedras de rins,” Ph.D thesis, Departamento de Química, Universidade Federal do Espírito Santo, Vitória, Brazil (in Portuguese).Google Scholar
Larson, A.C. and Von Dreele, R.B. (2000). General Structure Analysis System (GSAS) (Report LAUR 86–748). (Los Alamos National Laboratory, Los Alamos, New Mexico).Google Scholar
Lonsdale, K., Sutor, D.J., and Wooley, S. (1968). “Composition of urinary calculi by X-ray diffraction. Collected data from various localities. I. Norwich (England) and District,” Br. J. Urol.BJURAN 40, 3336. bju, BJURAN Google Scholar
NIST (2000). Certificate of Analysis, Standard Reference Material 660a, Lanthanum Hexaboride Powder (National Institute of Standards and Technology, Gaithersburg, Maryland) 〈https://srmors.nist.gov/view_detail.cfm?srm=660A〉.Google Scholar
NIST (2005). Certificate of Analysis, Standard Reference Material 676, Alumina Internal Standard (National Institute of Standards and Technology, Gaithersburg, Maryland) 〈https://srmors.nist.gov/view_cert. cfm?srm=676〉.Google Scholar
Singh, S., Singh, V.R., and Dhawan, U. (1999). “X-ray diffractometric and spectroscopic analysis of renal calculi,” J. Mater. Sci. Lett.JMSLD5 18, 20012003. jml, JMSLD5 Google Scholar
Söhnel, O. and Grases, F. (1995). “Calcium oxalate monohydrate renal calculi. Formation and development mechanism,” Adv. Colloid Interface Sci.ACISB9 59, l17. avi, ACISB9 Google Scholar
Spector, M., Garden, N.M., and Rous, S.N. (1978). “Ultrastructure and pathogenesis of human urinary calculi,” Br. J. Urol.BJURAN 50, 1215. bju, BJURAN CrossRefGoogle ScholarPubMed
Takasaki, E. (1971). “An observation on the analysis of urinary calculi by infrared spectroscopy,” Calcif. Tissue Res.CATRBZ 7, 232240. cat, CATRBZ Google Scholar
Toby, B.H. (2001). “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr.JACGAR 34, 210213. acr, JACGAR CrossRefGoogle Scholar
Westbury, E.J., and Omenogor, P. (1970). “A quantitative approach to the analysis of renal calculi,” J. Med. Lab Technol.ZZZZZZ 27, 462474. 5hg, ZZZZZZ Google Scholar