Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T02:40:32.778Z Has data issue: false hasContentIssue false

Crystal structure from laboratory X-ray powder diffraction data, DFT-D calculations, and Hirshfeld surface analysis of (S)-dapoxetine hydrochloride

Published online by Cambridge University Press:  13 September 2022

Analio J. Dugarte-Dugarte
Affiliation:
Laboratorio de Cristalografía-LNDRX, Departamento de Química, Facultad de Ciencias, Universidad de los Andes, Mérida 5101, Venezuela
Robert A. Toro
Affiliation:
Grupo de Investigación en Química Estructural (GIQUE), Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, Bucaramanga, Colombia
Jacco van de Streek
Affiliation:
Avant-garde Materials Simulation, Alte Str. 2, D-79249 Merzhausen, Germany
José Antonio Henao
Affiliation:
Grupo de Investigación en Química Estructural (GIQUE), Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, Bucaramanga, Colombia
Graciela Díaz de Delgado
Affiliation:
Laboratorio de Cristalografía-LNDRX, Departamento de Química, Facultad de Ciencias, Universidad de los Andes, Mérida 5101, Venezuela
José Miguel Delgado*
Affiliation:
Laboratorio de Cristalografía-LNDRX, Departamento de Química, Facultad de Ciencias, Universidad de los Andes, Mérida 5101, Venezuela
*
a)Author to whom correspondence should be addressed. Electronic mail: jmdq2000@gmail.com

Abstract

The previously unreported crystal structure of (S)-Dapoxetine hydrochloride (DAPHCl), the only active pharmaceutical ingredient specially developed for the treatment of premature ejaculation in men, has been determined from laboratory X-ray powder diffraction data with DASH and refined by the Rietveld method with TOPAS-Academic. The structure was evaluated and optimized by dispersion-corrected DFT calculations. This compound crystallizes in an orthorhombic cell, space group P212121, with unit-cell parameters a= 6.3208(3) Å, b = 10.6681(5) Å, c = 28.1754(10) Å, V = 1899.89(14) Å3, Z = 4. The refinement converged to Rp = 0.0442, Rwp = 0.0577, and GoF = 2.440. The crystal structure is a complex 3D arrangement of DAPHCl moieties held together by hydrogen bonds, π⋯π, and C–H⋯π interactions. The chloride ions form layers parallel to the ab plane and are connected by dapoxetinium moieties through N–H⋯Cl and C–H⋯Cl hydrogen bonds. These layers stack along the c-axis, which are connected by C–H⋯π interactions. Hirshfeld surface analysis and fingerprint plot calculations have been performed.

Type
New Diffraction Data
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of International Centre for Diffraction Data

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Attia, A. K., Souaya, E. R., and Soliman, E. A. (2015). “Thermal analysis investigation of dapoxetine and vardenafil hydrochlorides using molecular orbital calculations,” Adv. Pharm. Bull. 5, 523529.CrossRefGoogle ScholarPubMed
Blanton, J. R., Papoular, R. J., and Louër, D. (2019). “PreDICT: a graphical user interface to the DICVOL14 indexing software program for powder diffraction data,” Powd. Diffr. 34(3), 233241.CrossRefGoogle Scholar
Brandenburg, K. (1999). DIAMOND, Version 3.0 (Crystal Impact GbR, Bonn, Germany).Google Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E., and Orpen, A. G. (2004). “Retrieval of crystallographically-derived molecular geometry information,” J. Chem. Inf. Comput. Sci. 44(6), 21332144.CrossRefGoogle ScholarPubMed
Coelho, A. A. (2016). TOPAS-Academic Version 6, Program for Crystal Structure Refinement (Coelho Software, Brisbane, Australia).Google Scholar
Darcsi, A. (2017). “Chemical and structural characterization of dapoxetine and its cyclodextrin complexes,” Doctoral dissertation, Semmelweis University, Budapest, Hungary.Google Scholar
David, W., Shankland, K., van de Streek, J., Pidcock, E., Motherwell, W. D. S., and Cole, J. (2006). “DASH: a program for crystal structure determination from powder diffraction data,” J. Appl. Crystallogr. 39(6), 910915.CrossRefGoogle Scholar
de Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. 1(2), 108113.CrossRefGoogle Scholar
Dugarte-Dugarte, A. J., van de Streek, J., Díaz de Delgado, G., Rafalska-Lasocha, A., and Delgado, J. M. (2021). “Crystal structure from laboratory X-ray powder diffraction data, DFT-D calculations, Hirshfeld surface analysis, and energy frameworks of a new polymorph of 1-benzothiophene-2-carboxylic acid,” Powd. Diffr. 36(1), 213.CrossRefGoogle Scholar
Esmaeili, A., Kamiyama, T., and Oishi-Tomiyasu, R. (2017). “New functions and graphical user interface attached to powder indexing software CONOGRAPH,” J. Appl. Crystallogr. 50(2), 651659.CrossRefGoogle Scholar
Gates-Rector, S., and Blanton, T. (2019). “The powder diffraction file: a quality materials characterization database,” Powd. Diffr. 34(4), 352360.CrossRefGoogle Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P., and Ward, S. C. (2016). “The Cambridge structural database,” Acta Crystallogr. B 72(2), 171179.CrossRefGoogle ScholarPubMed
Hoy, S. M., and Scott, L. J. (2010). “Dapoxetine,” Drugs 70, 14331443.CrossRefGoogle ScholarPubMed
ICDD (2022). JADE® Pattern Digitizer. Available at: https://www.icdd.com/jade-pattern-digitizer/?page=www.icdd.com/JadeSAS/jade-pattern-digitizer/. Accessed July 22, 2022.Google Scholar
Kresse, G., and Furthmüller, J. (1996). “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B. 54(16), 1116911186.Google ScholarPubMed
Louër, D., and Boultif, A. (2014). “Some further considerations in powder diffraction pattern indexing with the dichotomy method,” Powd. Diffr. 29, S7S12.CrossRefGoogle Scholar
Malone, J. F., Murray, C. M., Charlton, M. H., Docherty, R., and Lavery, A. J. (1997). “X-H⋯π (phenyl) interactions Theoretical and crystallographic observations,” J. Chem. Soc., Faraday Trans. 93(19), 34293436.CrossRefGoogle Scholar
Markvardsen, A. J., David, W. I. F., Johnson, J. C., and Shankland, K. (2001). “A probabilistic approach to space-group determination from powder diffraction data,” Acta Crystallogr. A 57(1), 4754.CrossRefGoogle ScholarPubMed
McCarty, E. J., and Dinsmore, W. W. (2012). “Dapoxetine: an evidence-based review of its effectiveness in treatment of premature ejaculation,” Core Evid. 7, 1.Google ScholarPubMed
Mighell, A. D., Hubbard, C. R., and Stalick, J. K. (1981). “NBS* AIDS83: A FORTRAN program for crystallographic data evaluation,” National Bureau of Standards (USA), Technical Note 1141.Google Scholar
Neumann, M. A., and Perrin, M.-A. (2005). “Energy ranking of molecular crystals using density functional theory calculations and an empirical van der Waals correction,” J. Phys. Chem. B. 109, 1553115541.CrossRefGoogle Scholar
Neumann, M. A., et al. (2002). Grace, Avant-garde Materials Simulation, Merzhausen, Germany.Google Scholar
Oishi-Tomiyasu, R. (2013). “Reversed de Wolff figure of merit and its application to powder indexing solutions,” J. Appl. Crystallogr. 46(5), 12771282.CrossRefGoogle Scholar
Perdew, J. P., Burke, K., and Ernzerhof, M. (1996). “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77(18), 3865–3388.CrossRefGoogle ScholarPubMed
Ren, G., Ren, B., Qi, M., Le, Y., Hong, M., Cao, G., and Chen, J. (2011). “Crystal and amorphous substance of dapoxetine hydrochloride and preparation method thereof,” Patent Assignee Xiamen Fuman Pharmaceutical Co., Ltd. and Shanghai Pharmaceutical Industry Research Institute, Patent CN103130661B, 25 November 2011.Google Scholar
Ren, B., Ren, G., Chen, J., Qi, M., Yue, Y., Hong, M., and Cao, G. (2013). “Crystal and amorphous substance of dapoxetine hydrochloride and preparation method thereof,” Patent WO2013075669A1, 30 May 2013.Google Scholar
Russo, A., Capogrosso, P., Ventimiglia, E., La Croce, G., Boeri, L., Montorsi, F., and Salonia, A. (2016). “Efficacy and safety of dapoxetine in treatment of premature ejaculation: an evidence-based review,” Int. J. Clin. Pract. 70(9), 723733.CrossRefGoogle ScholarPubMed
Selvakumar, M. (2018). “Formulation and Evaluation of Dapoxetine HCL Nanoparticle Capsules,” Doctoral dissertation, College of Pharmacy, Madurai Medical College, Madurai, Tamil Nadu, India.Google Scholar
Smith, G. S. and Snyder, R. L. (1979). “FN: a criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. 12(1), 6065.CrossRefGoogle Scholar
Spackman, M. A. and Jayatilaka, D. (2009). “Hirshfeld surface analysis,” CrystEngComm 11(1), 1932.CrossRefGoogle Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D., and Spackman, M. A. (2021). “Crystalexplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals,” J. Appl. Crystallogr. 54(3), 10061011.Google ScholarPubMed
Stewart, J. J. P. (2013). “Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters,” J. Mol. Model. 19(1), 132.CrossRefGoogle Scholar
Stewart, J. J. P. (2016). MOPAC2016 (Stewart Computational Chemistry, Colorado Springs, CO, USA).Google Scholar
Toro, R. A., Dugarte-Dugarte, A., van de Streek, J., Henao, J. A., Delgado, J. M., and Díaz de Delgado, G. (2022). “Crystal structure from X-ray powder diffraction data, DFT-D calculation, Hirshfeld surface analysis, and energy frameworks of (RS)-trichlormethiazide,” Acta Crystallogr. E 78(2), 140148.CrossRefGoogle Scholar
Vallcorba, O., Rius, J., Frontera, C., Peral, I., and Miravitlles, C. (2012). “DAJUST: a suite of computer programs for pattern matching, space-group determination and intensity extraction from powder diffraction data,” J. Appl. Crystallogr. 45(4), 844848.Google Scholar
van de Streek, J., and Neumann, M. (2014). “Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D),” Acta Crystallogr. B 70(6), 10201032.CrossRefGoogle ScholarPubMed
Supplementary material: File

Dugarte-Dugarte et al. supplementary material

Dugarte-Dugarte et al. supplementary material

Download Dugarte-Dugarte et al. supplementary material(File)
File 250.9 KB