Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T05:30:24.110Z Has data issue: false hasContentIssue false

Crystal structure and powder diffraction pattern of high-temperature modification of Pd73Sn14Te13

Published online by Cambridge University Press:  01 March 2012

F. Laufek
Affiliation:
Czech Geological Survey, Geologická 6, 152 00 Praha 5, Czech Republic
A. Vymazalová
Affiliation:
Czech Geological Survey, Geologická 6, 152 00 Praha 5, Czech Republic
J. Plášil
Affiliation:
Faculty of Science, Charles University, Albertov 6, 128 43 Praha 2, Czech Republic

Abstract

Crystal structure of high-temperature modification of Pd73Sn14Te13 has been refined by the Rietveld method from laboratory X-ray powder diffraction data. Refined crystallographic data of Pd73Sn14Te13 are a=7.6456(3) Å, c=13.9575(9) Å, V=706.75(6) Å3, space group P63cm (No. 185), Z=6, and Dx=10.71 g/cm3. The title compound is isostructural with Pd5Sb2 and Ni5As2; it can be considered as a stacking and filling variant of the Ni2In structure. An important structural feature in the high-temperature modification of Pd73Sn14Te13 is the presence of various Pd-Pd bonds.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altomare, A., Caliandro, R., Camalli, M., Cuocci, C., Giacovazzo, C., Moliterni, A. G. G., and Rizzi, R. (2004). “Automatic structure determination from powder data with EXPO2004,” J. Appl. Crystallogr.JACGAR10.1107/S0021889804021417 37, 10251028.CrossRefGoogle Scholar
Boultif, A. and Louër, D. (2004). “Powder pattern indexing with the dichotomy method,” J. Appl. Crystallogr.JACGAR10.1107/S0021889804014876 37, 724731.CrossRefGoogle Scholar
Coelho, A. A. and Cheary, R. W. (1997). X-ray Line Profile Fitting Program, XFIT (computer software), School of Physical Sciences, University of Technology, Sydney, Australia.Google Scholar
de Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr.JACGAR10.1107/S002188986800508X 1, 108113.CrossRefGoogle Scholar
El-Boragy, M., Bhan, S., and Schubert, K. (1970). “Kristallstruktur von Pd5Sb2 und Ni5As2 und einigen varianten,” J. Less-Common Met.JCOMAH 22, 445458.CrossRefGoogle Scholar
El-Boragy, M. and Schubert, K. (1971). “Uber einige varianten der NiAs-familie in mischungen des palladiums mit B-elementen,” Z. Metallkd.ZEMTAE 62, 314323.Google Scholar
Ellner, M. and El-Boragy, M. (1992). “Űber die eisenhaltigen vertreter des strukturtyps Pd5Sb2,” J. Alloys Compd.JALCEU 184, 131138.CrossRefGoogle Scholar
Emsley, J. (1989). The Elements (Oxford, U. P., Oxford), p. 256.Google Scholar
Favre-Nicolin, V. and Černý, R. (2002). “FOX, ‘free objects for crystallography’: a modular approach to ab initio structure determination from powder diffraction,” J. Appl. Crystallogr.JACGAR10.1107/S0021889802015236 35, 734743.CrossRefGoogle Scholar
Franzen, H. F. and Köckerling, M. (1995). “The stabilization of ternary early transition-metal sulfides and phosphides at high temperatures by differential site occupancy,” Prog. Solid State Chem.PSSTAW 23, 265289.CrossRefGoogle Scholar
ICDD (2002). “Powder Diffraction File,” 12 Campus Boulevard, International Centre for Diffraction Data, edited by McClune, Frank, Newton Square, PA 19073–3273.Google Scholar
ICSD (2006). “Inorganic Crystal Structure Database,” version 2006-02, Fachinformationszentrum, Karlsruhe, Germany and The National Institute of Standards and Technology (NIST), Gaithersburg, MD.Google Scholar
Kjekshus, A. and Skaug, K. E. (1973). “On the crystal structure of Ni5As2,” Acta Chem. Scand. (1947-1973)ACSAA4 (1947–1973) 27, 582588.CrossRefGoogle Scholar
Kleinke, H. and Franzen, H. F. (1998). “Bonding and site preferences in the new quasi-binary Zr2.7Hf11.3P9,” J. Solid State Chem.JSSCBI 136, 221226.CrossRefGoogle Scholar
Kullerud, G. (1971). “Experimental techniques in dry sulfide research,” in Research Techniques for High Pressure and High Temperature, edited by Ulmer, G. C. (Springer-Verlag, New York), pp. 288315.Google Scholar
Rodríguez-Carvajal, J. (1990). “FullProf: A Program for Rietveld Refinement and Pattern Matching Analysis,” Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Toulouse, France, p. 127.Google Scholar
Savilov, S. V., Kuznetsov, A. N., Popovkin, B. A., Khrustalev, V. N., Simon, P., Getzschmann, J., Doert, Th., and Ruck, M. (2004). “Synthesis, crystal structure and electronic structure of modulated Pd7−δSnTe2,” Z. Anorg. Allg. Chem.ZAACAB 631, 293301.CrossRefGoogle Scholar
Smith, G. S. and Snyder, R. L. (1979). “F N: A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr.JACGAR10.1107/S002188987901178X 12, 6065.CrossRefGoogle Scholar
Vymazalová, A. (2005). “The Pd-Sn-Te system and its geological application.” Ph.D. thesis, Charles University, Prague, Czech Republic, p. 54.Google Scholar
Vymazalová, A., Drábek, M., Ondruš, P., and Frýda, J. (2004). “Experimental results and mineralogy of the Pd-Sn-Te system,” Proceedings of the 32nd International Geological Congress, Florence, Italy, August 2004.Google Scholar