Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T13:50:51.893Z Has data issue: false hasContentIssue false

Ab initio structure determination of nanosized θ-KAlF4 with edge-sharing AlF6 octahedra

Published online by Cambridge University Press:  29 February 2012

A. Le Bail*
Affiliation:
Laboratoire des Oxydes et Fluorures, CNRS UMR 6010, Université du Maine, Avenue O. Messiaen, 72085 Le Mans Cedex 9, France
*
a)Electronic mail: armel.le_bail@univ-lemans.fr

Abstract

θ-KAlF4 is a new nanosized potassium tetrafluoroaluminate metastable polymorph (13×18×55 nm3). The crystal structure is solved ab initio from X-ray powder diffraction data in direct space [orthorhombic unit cell with a=8.3242(3) Å, b=7.2502(3) Å, c=11.8875(4) Å, V=717.44(5) Å3, Z=8, and space group Pnma]. This new structure type, unique in the whole AIMIIIF4 family, is related to the fluorite structure and consists of AlF6 octahedra linked via a common edge forming a bioctahedral motif which is trans-connected through the corner-shared fluorine, resulting in the formation of infinite ladderlike double file of octahedra ([Al2F8]2−)n running along the b axis.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bentrup, U., Le Bail, A., Duroy, H., and Fourquet, J. L. (1992). “Polymorphism of CsAlF4: Synthesis and structure of two new crystalline forms,” Eur. J. Solid State Inorg. Chem. EJSCE5 29, 371381.Google Scholar
de Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. JACGAR 1, 108113. 10.1107/S002188986800508XGoogle Scholar
Dewan, J. C., Edwards, A. J., and Guy, J. J. (1986). “Structural studies of potassium tetrafluorochromate(III), KCrF4, and the novel mixed chloride fluoride, dipotassium dichlorohexafluorotrichromate(II), K2Cr3Cl2F6,” J. Chem. Soc. Dalton Trans. JCDTBI 26232627. 10.1039/dt9860002623Google Scholar
Dollase, W. A. (1986). “Correction of intensities for preferred orientation in powder diffractometry: Application of the March model,” J. Appl. Crystallogr. JACGAR 19, 267272. 10.1107/S0021889886089458Google Scholar
Fourquet, J. L., Plet, F., and De Pape, R. (1980). “RbAlF4: Structure of its beta metastable form and description of its irreversible and topotactic phase transition,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. ACBCAR 36, 19972000. 10.1107/S0567740880007790Google Scholar
Gibaud, A., Bulou, A., Le Bail, A., Nouet, J., and Zeyen, C. M. E. (1987). “A premartensitic phase in KAlF4: Neutron and X-ray scattering evidences,” J. Phys. (France) JOPQAG 48, 15211532.Google Scholar
Gibaud, A., Le Bail, A., and Bulou, A. (1986). “A re-investigation of the room-temperature phase of KAlF4: Evidence of antiphase domains,” J. Phys. C JPSOAW 19, 46234633. 10.1088/0022-3719/19/24/007Google Scholar
Knoke, G., Verscharen, W., and Babel, D. (1979). “Crystal-structure of sodium chromium tetrafluoride NaCrF4,” J. Chem. Res., Synop. JRPSDC 7, 213.Google Scholar
Launay, J. M., Bulou, A., Hewat, A. W., Gibaud, A., Laval, J. Y., and Nouet, J. (1985). “Shear transformation in the layered compound KAlF4: Low temperature phase structure and transformation mechanism,” J. Phys. (France) JOPQAG 46, 771782.Google Scholar
Le Bail, A. (2001). “ESPOIR: A program for solving structures by Monte Carlo from powder diffraction data,” Mater. Sci. Forum MSFOEP 378–381, 6570. 10.4028/www.scientific.net/MSF.378-381.65Google Scholar
Le Bail, A. (2004). “Monte Carlo indexing with MCMAILLE,” Powder Diffr. PODIE2 19, 249254. 10.1154/1.1763152Google Scholar
Le Bail, A. (2005a). “Inorganic structure prediction with GRINSP,” J. Appl. Crystallogr. JACGAR 38, 389395. 10.1107/S0021889805002384Google Scholar
Le Bail, A. (2005b). “Whole powder pattern decomposition methods and applications— A retrospection,” Powder Diffr. PODIE2 20, 316326. 10.1154/1.2135315Google Scholar
Le Bail, A. (2008). “Structure solution,” in Principles and Applications of Powder Diffraction, edited by Clearfield, A., Reibenspies, J., and Bhuvanesh, N. (Wiley, New York), pp. 261309.Google Scholar
Le Bail, A. and Calvayrac, F. (2006). “Hypothetical AlF3 crystal structures,” J. Solid State Chem. JSSCBI 179, 31593166. 10.1016/j.jssc.2006.06.010Google Scholar
Le Bail, A., Duroy, H., and Fourquet, J. L. (1992). “Crystal structure of K2(H5O2)Al2F9,” J. Solid State Chem. JSSCBI 98, 151158. 10.1016/0022-4596(92)90081-6Google Scholar
Le Bail, A., Gao, Y., Fourquet, J. L., and Jacoboni, C. (1990). “Structure determination of A 2NaAl3F12 (A=K,Rb),” Mater. Res. Bull. MRBUAC 25, 831839. 10.1016/0025-5408(90)90059-BGoogle Scholar
Loiseau, T., Muguerra, H., Marrot, J., Férey, G., Haouas, M., and Taulelle, F. (2005). “A ladderlike chain aluminum fluoride ([Al2F8]2−)n with edge-sharing AlF6 octahedra,” Inorg. Chem. INOCAJ 44, 29202925. 10.1021/ic048461zGoogle Scholar
Massa, W. and Babel, D. (1988). “Crystal structure and bonding in transition-metal fluoro compounds,” Chem. Rev. (Washington, D.C.) CHREAY 88, 275296. 10.1021/cr00083a013Google Scholar
Nouet, J., Pannetier, J., and Fourquet, J. L. (1981). “The room-temperature structure of potassium tetrafluoroaluminate,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. ACBCAR 37, 3234. 10.1107/S0567740881002136Google Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. JACGAR 2, 6571. 10.1107/S0021889869006558Google Scholar
Rodriguez-Carvajal, J. (1993). “Recent advances in magnetic-structure determination by neutron powder diffraction,” Physica B PHYBE3 192, 5569. 10.1016/0921-4526(93)90108-IGoogle Scholar
Smith, G. S. and Snyder, R. L. (1979). “F N: A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. JACGAR 12, 6065. 10.1107/S002188987901178XGoogle Scholar
Thompson, P., Cox, D. E., and Hastings, J. B. (1987). “Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3,” J. Appl. Crystallogr. JACGAR 20, 7983. 10.1107/S0021889887087090Google Scholar
Werner, P. E., Eriksson, L., and Westdahl, M. J. (1985). “TREOR: A semi-exhaustive trial-and-error powder indexing program for all symmetries,” J. Appl. Crystallogr. JACGAR 18, 367370. 10.1107/S0021889885010512Google Scholar