Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T04:55:59.600Z Has data issue: false hasContentIssue false

Tracing the domestication of the Andean root crop arracacha (Arracacia xanthorrhiza Bancr.): a molecular survey confirms the selection of a wild form apt to asexual reproduction

Published online by Cambridge University Press:  10 March 2016

Eduardo Morillo*
Affiliation:
Instituto Nacional Autónomo de Investigaciones Agropecuarias (INIAP), Casilla postal 17-01-340 Quito, Ecuador IRD (Institut de Recherche pour le Développement), Montpellier, France
Gérard Sécond
Affiliation:
IRD (Institut de Recherche pour le Développement), Montpellier, France
*
*Corresponding author. E-mail: eduardo.morillo@iniap.gob.ec

Abstract

Andean arracacha (Arracacia xanthorrhiza Bancr.) is a valuable but poorly known vegetatively reproduced root crop whose origin is still unresolved. Wild tuberous forms are present in the presumed areas of domestication and have a perennial or monocarpic life history. To elucidate the origin of the cultivated form, we surveyed a molecular analysis with amplified fragment length polymorphisms (AFLPs) in a representative sample of this crop and its wild relatives from Ecuador and Peru, the presumed areas of domestication. Wild species with tuberous and non-tuberous roots were included, as well as the perennial and monocarpic forms of the presumed wild ancestor. While the two wild varieties of A. xanthorrhiza were closest to the cultivars, they were distinguished by AFLPs. Unexpectedly, two clearly distinct groups were formed among the cultivars, one of which was significantly closer to the monocarpic wild form. However, the chloroplast DNA survey revealed greater similarity between all of the cultivars and the wild perennial A. xanthorrhiza. These results combined with the morphological and life history features, confirms the hypothesis that arracacha domestication started from the wild perennial form. We suggest this scenario of domestication followed by an unsuspected introgression in the cultivation, resulting in two cryptic genetic groups, well distinguished at the molecular level. This is an important revelation with implications in genetic resource conservation and breeding standpoints in this promissory crop.

Type
Research Article
Copyright
Copyright © NIAB 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Deceased.

References

Blas, R (2005) Diversity of Arracacia species in Peru. PhD Thesis, Gembloux Agricultural University, Belgium, p. 154.Google Scholar
Blas, R, Ghislain, M, Herrera, M and Baudoin, JP (2008a) Genetic diversity analysis of wild Arracacia species according to morphological and molecular species. Genetic Resources and Crop Evolution 55: 625642.Google Scholar
Blas, R, Hermann, M and Baudoin, JP (2008b) Analysis of the geographic distribution and relationships among Peruvian wild species of Arracacia . Genetic Resources and Crop Evolution 55: 643655.Google Scholar
Bristol, ML (1988) Edible arracachas of the Sibundoy. Rev. Academia Colombiana de Ciencias Exactas, Físicas y Naturales 16: 107110.Google Scholar
Castillo, RO (1995) Plant genetic resources in the Andes: impact, conservation, and management. Crop Science 35: 355360.Google Scholar
Demesure, B, Sodzi, N and Petit, RJ (1995) A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Molecular Ecology 4: 129131.CrossRefGoogle ScholarPubMed
DNAstar software ver. 5.07 Inc. (2003) Madison, WI. http://www.dnastar.com Google Scholar
Elias, M, Rival, L and Mckey, D (2001) Perception and management of cassava (Manihot esculenta Crantz) diversity among Makushi amerindians of Guyana (South America). Journal of Ethnobiology 20: 239265.Google Scholar
Emperaire, E, Pinton, F and Second, G (1998) Gestion dynamique de la diversité variétale du manioc en Amazonie du nord-ouest. Nature, Science et Société 6: 2742.Google Scholar
Hahn, W (2002) A phylogenetic analysis of the arecoid line of palms based on plastid DNA sequence data. Molecular Phylogenetics and Evolution 23: 189204.Google Scholar
Harlan, JR (1992) Crops and Man. Madison: American Society of Agronomy, Inc. Crop Science Society of America, Inc.Google Scholar
Hawkes, JG (1989) The domestication of roots and tubers in the America tropics. In: Harris, and Hillman, (ed.) Foraging and Farming. London: Unwin Hyman, pp. 481503.Google Scholar
Hermann, M (1997) Arracacha. In: Hermann, M and Heller, J (eds.) Andean Roots and Tubers: ahipa, arracacha, maca and yacon, vol. 21. Peru: International Potato Center, pp. 75172.Google Scholar
Jhingan, A (1992) A novel technology for DNA isolation. Methods Molecular Cellular Biology 3: 1522.Google Scholar
Keuls, M (1952) The use of a studentized range in connection with analysis of variance. Euphytica 1: 112122.Google Scholar
Knudsen, SR (2003) A revision of the South American species of the genus Arracacia Bancroft Apiaceae. PhD Thesis, Department of Ecology. KVL University, Denmark, p. 150.Google Scholar
Mazon, N, Castillo, R, Hermann, M and Espinosa, P (1996) Analítico: zanahoria blanca o arracacha (Arracacia xanthorrhiza Bancroft) en Ecuador. Ecuador: Publicación Miscelánea INIAP, vol. 67, p. 41.Google Scholar
Morillo, E (2006) Origine de la diversité de plantes domestiquées par la reproduction végétative en Amérique du Sud: reproduction sexuée résiduelle et introgression d’espèces sauvages éloignées. Exemples de l’ arracacha (Arracacia xanthorrhiza Banc., Apiaceae) et du manioc. (Manihot esculenta Crantz, Euphorbiaceae). Thèse de Doctorat. ENSAM, Montpellier. 170 p.Google Scholar
Nei, M (1972) Genetic distance between populations. American Naturalist 106: 283392.Google Scholar
Peakall, R and Smouse, P (2001) GenAlEx V5: Genetic Analysis in Excel. Population Genetic Software for Teaching and Research. Canberra, Australia: Australian National University.Google Scholar
Scarcelli, N, Tostain, S, Vigouroux, Y, Agbangla, C, Daïnou, O and Pham, JL (2006) Farmers’ use of wild relative and sexual reproduction in a vegetatively propagated crop. The case of yam in Benin. Molecular Ecology 15: 24212431.Google Scholar
StatSoft Inc. (2001) STATISTICA (Data Analysis Software System), version 6. Tulsa, USA, p. 150.Google Scholar
Swofford, D (2001) PAUP Software. Phylogenetic Analysis Using Parsimony. Version 4b8, Sunderland, MA: Sinauer.Google Scholar
Valderrama, M and Seminario, J (2002) Los parientes silvestres de la arracacha (Arracacia xanthorrhiza Bancroft) y su uso en medicina tradicional, en el norte peruano. Arnaldoa, Trujillo, Perú. 9: 6791.Google Scholar
Vásquez, N, Medina, C and Lobo, M (2004) Caracterización morfológica de la colección colombiana (Tolima, Huila, Boyacá, Cauca) de arracacha (Arracacia xanthorrhiza). In: Raíces andinas: contribuciones al conocimiento y a la capacitación. Serie: conservación y uso de la biodiversidad de tubérculos y raíces andinos: una década de investigación para el desarrollo (1993–2003), pp. 165178.Google Scholar
Supplementary material: File

Morillo and Sécond supplementary material

Table S1

Download Morillo and Sécond supplementary material(File)
File 24.1 KB