We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
This journal utilises an Online Peer Review Service (OPRS) for submissions. By clicking "Continue" you will be taken to our partner site
https://mc.manuscriptcentral.com/par.
Please be aware that your Cambridge account is not valid for this OPRS and registration is required. We strongly advise you to read all "Author instructions" in the "Journal information" area prior to submitting.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The diagnosis of cystic echinococcosis (CE) is based on imaging. Detection of a focal lesion with morphological characteristics of Echinococcus granulosus sensu lato metacestode is the starting point for the diagnostic workup. In organs explorable with ultrasound (US), this is the method of choice for both aetiological diagnosis of CE and staging of the CE cyst. Staging in terms of lesion morphology is also needed when serology is added to the diagnostic workflow when imaging alone is inconclusive. Finally, staging guides the clinical management of uncomplicated CE, especially in the liver. This commentary provides an overview of the most up-to-date evidence backing the above-mentioned role of US in the diagnosis and clinical management of CE. Finally, we outline future perspectives for the improvement of CE diagnosis.
This study aimed to explore extracellular microRNA derived from Echinococcus multilocularis (EM) in the plasma of patients with alveolar echinococcosis (AE) and assess its potential as a diagnostic biomarker. EM-derived miRNAs were identified in plasma samples from 20 AE patients through miRNA sequencing. Three novel miRNA molecules (emu-miR-novel 1, 2 and 3) were predicted through bioinformatic analysis to elucidate their chromosomal locations, secondary structures and precursor forms. Subsequently, plasma samples from 30 AE patients and 30 controls were utilized to establish an assay via stem-loop reverse transcription PCR, optimizing primers, reaction systems, and conditions to assess cross-reactivity and sensitivity. Clinical validation revealed that emu-miR-novel 1 had the highest diagnostic accuracy, with an area under the curve (AUC) of 0.8994, a P value of less than 0.0001, a sensitivity of 83.3%, and a specificity of 86.7%. Statistically significant differences were observed between the groups for emu-miR-novel 1 (P < 0.05), whereas emu-miR-novel 2 and 3 showed AUC values of 0.7922 and 0.6883, with P values of 0.0001 and 0.012, respectively, indicating no significant difference between groups (P > 0.05). Furthermore, the assay showed no cross-reactivity with samples from 18 common viruses, 4 parasitic infections, and miRNAs from AE sequenced from 8 species, confirming its high specificity. Emu-miR-novel 1 exhibited a sensitivity of 1 femtomolar. Emu-miR-novel 1 holds promise as a key diagnostic tool for AE, offering a novel perspective and approach for disease diagnosis.