Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T10:04:04.723Z Has data issue: false hasContentIssue false

The Wellcome Trust Lecture

Problems specific to parasite vaccines

Published online by Cambridge University Press:  06 April 2009

G. F. Mitchell
Affiliation:
The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3050, Australia

Abstract

The modern biology era in which molecular analyses dominate and immunology, cell biology and molecular genetics are prominent, has created unprecedented opportunities for the vaccine developer. The need for new and improved vaccines against many infectious disease agents is also great, no more so than for the protozoan and helminth parasite scourges of the rural poor in the tropical, less-industrially developed world. Despite the opportunities and needs, no vaccine against any human parasite yet exists nor does any molecular vaccine against any parasite; this chapter is a general discussion on the reasons for this state of affairs that assuredly will change soon.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anders, R. F. (1986). Multiple cross-reactivities amongst antigens of Plasmodium falciparum impair the development of protective immunity against malaria. Parasite Immunology 8, 529–39.Google Scholar
Balloul, J. M., Sondermeyer, P., Dreyer, D., Capron, M., Grzych, J. M., Pierce, R. J., Cavallo, D., Lecocq, J. P. & Capron, A. (1987). Molecular cloning of a protective antigen of schistosomes. Nature, London 326, 149–53.Google Scholar
Behnke, J. M. (1987). Evasion of immunity by nematode parasites causing chronic infections. Advances in Parasitology 26, 171.Google Scholar
Bloom, B. (1979). Games parasites play: how parasites evade immune surveillance. Nature, London 279, 21–6.Google Scholar
Brindley, P. J. & Sher, A. (1987). Chemotherapeutic effect of praziquantel against Schistosoma mansoni is dependent on host antibody response. Journal of Immunology 139, 215–20.Google Scholar
Butterworth, A. E., Bensted-Smith, R., Capron, A., Capron, M., Dalton, P. R., Dunne, D. W., Grzych, J. M., Kariuki, H. C., Khalife, J., Koech, D., Mugarbi, M., Ouma, J. H., Arap-Siongkok, T. K. & Sturrock, R. F. (1987). Immunity in human schistosomiasis mansoni: prevention by blocking antibodies of the expression of immunity in young children. Parasitology 94, 281300.CrossRefGoogle ScholarPubMed
Callow, L. L. (1977). Vaccination against bovine babesiosis. Advances in Experimental Medicine and Biology 93, 121–49.CrossRefGoogle ScholarPubMed
Capron, A., Dessaint, J. P., Capron, M., Ouma, J. H. & Butterworth, A. E. (1987). Immunity to schistosomes: progress toward vaccine. Science 238, 1065–72.Google Scholar
Coutelier, J. P., Van der logt, J. T., Heessen, F. W., Warnier, G. & Van snick, J. (1987). IgG2a restriction of murine antibodies elicited by viral infections. Journal of Experimental Medicine 165, 64–9.Google Scholar
Cross, G. A. M. (1984). Structure of the variant glycoproteins and surface coat of Trypanosoma brucei. Philosophical Transactions of the Royal Society of London 307, 312.Google Scholar
Dean, D. A. (1983). Schistosoma and related genera: acquired resistance in mice. Experimental Parasitology 55, 1104.Google Scholar
Dineen, J. K & Wagland, B. M. (1982). Immunoregulation of parasites in natural host parasite systems with special reference to the gastrointestinal nematodes of sheep In Biology and Control of Endoparasites (ed. Symons, L. E. A., Donald, A. D. and Dineen, J. K.), pp. 297329. Sydney: Academic Press.Google Scholar
Doenhoff, M. J., Sabah, A. A. A., Fletcher, C., Webbe, G. & Bain, J. (1987). Evidence for an immune-dependent action of praziquantel on Schistosoma mansoni in mice. Transactions of the Royal Society of Tropical Medicine and Hygiene 81, 947–51.CrossRefGoogle ScholarPubMed
Dunne, D. W., Bickle, Q. D., Butterworth, A. E. & Richardson, B. A. (1987). The blocking of human antibody dependent eosinophil-mediated killing of Schistosoma mansoni schistosomula by monoclonal antibodies which crossreact with a polysaccharide-containing egg antigen. Parasitology 94, 269–80.CrossRefGoogle ScholarPubMed
Erlich, J. H., Anders, R. F., Roberts-Thomson, I. C., Schrader, J. W. & Mitchell, G. F. (1983). An examination of differences in serum antibody specificities and hypersensitivity reactions as contributing factors to chronic infection with the intestinal protozoan parasite, Giardia muris, in mice. Australian Journal of Experimental Biology and Medical Science 61, 599–15.Google Scholar
Finkelman, F. D., Katona, I. M., Mossman, T. R. & Coffman, R. L. (1988). IFN-γ regulates the isotypes of Ig secreted during in vivo humoral immune responses. Journal of Immunology 140, 1022–7.Google Scholar
Forsyth, K. P., Copeman, D. B. & Mitchell, G. F. (1984). Differences in the surface radioiodinated proteins of skin and uterine microfilariae of Onchocerca gibsoni. Molecular and Biochemical Parasitology 10, 217–29.CrossRefGoogle ScholarPubMed
Good, M. F., Kumar, S. & Miller, L. H. (1988). The real difficulties for malaria sporozoite vaccine development: the hurdles of antigenic variation and immunological unresponsiveness. Immunology Today, (in the Press).CrossRefGoogle Scholar
Grzych, J. M., Capron, M., Dissous, C. & Capron, A. (1984). Blocking activity of rat monoclonal antibodies in experimental schistosomiasis. Journal of Immunology 133, 9981104.Google Scholar
Handman, E., Ceredig, R. & Mitchell, G. F. (1979). Murine cutaneous leishmaniasis: Disease patterns in intact and nude mice of various genotypes and examination of differences between normal and infected macrophages. Australian Journal of Experimental Biology and Medical Science 57, 929.Google Scholar
Hardy, R. R. & Hayakawa, K. (1986). Development and physiology of Ly-1B and its human homologue, LeulB. Immunological Reviews 93, 5379.CrossRefGoogle Scholar
Herzenberg, L. A., Stall, A. M., Lalor, P. A., Sidman, C., Moore, W. A., Parks, D. R. & Herzenberg, L. A. (1986). The Ly-1 B cell lineage. Immunological Reviews 93, 81102.Google Scholar
Heusser, C. H., Anderson, C. L. & Grey, H. M. (1977). Receptors for IgG: subclass specificity of receptors on different mouse cell types and the definition of two distinct receptors on a macrophage cell line. Journal of Experimental Medicine 145, 1316–27.Google Scholar
Holder, A. A. & Freeman, R. R. (1982). Biosynthesis and processing of a Plasmodium falciparum schizont antigen recognized by immune serum and a monoclonal antibody. Journal of Experimental Medicine 156, 1528–38.CrossRefGoogle ScholarPubMed
Howard, R. J., Chapman, C. B. & Mitchell, G. F. (1980). A difference in surface proteins of Fasciola hepatica larvae from intact and nude mice. Australian Journal of Experimental Biology and Medical Science 58, 201–5.Google Scholar
Ibanez, C. F., Affranchino, J. L., Macina, R. A., Reyes, M. B., Leguizamon, S., Camargo, M. E., Aslund, L., Pettersson, U. & Frasch, A. C. C. (1988). Multiple Trypanosoma cruzi antigens containing tandemly repeated amino acid sequence motifs. Molecular and Biochemical Parasitology 30, 2733.Google Scholar
Jarrett, W. F. H., Jennings, F. W., Mcintyre, W. I. M., Mulligan, W. & Urquhart, G. M. (1960). Immunological studies on Dictyocaulus vivaparus infection. Immunology 3, 145–51.Google Scholar
Johnson, W. J., Steplewski, Z., Koprowski, H. & Adams, D. O. (1985). Destructive interactions between murine macrophages, tumor cells and antibodies of the IgG2a isotype. In Mechanisms of Cell-Mediated Cytotoxicity II (ed. Henkart, P. and Martz, E.), pp. 7580. New York: Plenum Press.Google Scholar
Kemp, D. J., Coppel, R. L. & Anders, R. F. (1987). Repetitive proteins and genes of malaria. Annual Reviews of Microbiology 41, 181208.Google Scholar
Klaus, G. G. B., Pepys, M. B., Kitajima, K. & Askonas, B. A. (1979). Activation of mouse complement by different classes of mouse antibody. Immunology 38, 687–95.Google Scholar
Letonja, T. & Hammerberg, B. (1983). Third component of complement, immunoglobulin deposition and leucocyte attachment related to surface sulfate on larval Taenia taeniaeformis. Journal of Parasitology 69, 637–44.Google Scholar
Liew, F. Y. (1987). Analysis of host-protective and disease-promoting T cells. Annales de l'Institut Pasteur, Immunology 138, 749–55.Google Scholar
Locksley, R. M., Heinzel, F. P., Sadick, M. D., Holaday, B. J. & Gardner, K. D. (1987). Murine cutaneous leishmaniasis: susceptibility correlates with different expansion of helper T-cell subsets. Annales de l'Institut Pasteur. Immunology 138, 744–55.Google Scholar
Louis, J. & Milon, G. (1987). The immunobiology of experimental leishmaniasis. Annales de l'Institut Pasteur. Immunology 138, 737–8.Google Scholar
Mchugh, S. M., Coulson, P. S. & Wilson, R. A. (1987). The relationship between pathology and resistance to reinfection with Schistosoma mansoni in mice. A causal mechanism of resistance in chronic infection. Parasitology 94, 8192.Google Scholar
Miller, T. A. (1978). Industrial development and field uses of the canine hookworm vaccine. Advances in Parasitology 16, 333–42.Google Scholar
Mitchell, G. F. (1986). Cellular and molecular aspects of host-parasite relationships. In Proceedings of the VI International Congress of Immunology, Progress in Immunology (VI) 1986, (ed. Cinader, B. and Miller, R. G.) pp. 798808. Florida: Academic Press.Google Scholar
Mitchell, G. F. (1988). The way ahead for vaccines and vaccination. Vaccine 6, 200–5.CrossRefGoogle ScholarPubMed
Mitchell, G. F. (1989). Immunological introduction to the ‘difficult’ diseases. In The Molecular Route to New and Improved Vaccines, (ed. Woodrow, G. C. and Levine, M. M.). New York: Marcel Dekker. (in the Press).Google Scholar
Mitchell, G. F., Davern, K. M., Tiu, W. U., Wright, M. D., Henkle, K. L. & Rogers, M. v. (1988). Resistance to infection with Schistosoma japonicum and S. mansoni in 129 mice: speculation on the contribution of immune responses to schistosome glutathione S-transferases. Parasitology Today, (in the Press).Google Scholar
Mitchell, G. F., Garcia, E. G., Davern, K. M., Tiu, W. U. & Smith, D. B. (1988). Sensitization against Sj26 is not sufficient for consistent expression of resistance to Schistosoma japonicum in mice. Transactions of the Royal Society of Tropical Medicine and Hygiene (in the Press).Google Scholar
Mitchell, G. F., Handman, E., Spithill, T. W., Kidane, G. Z., Moll, H., Mcconville, M. J., Samaras, N. & Elhay, M. J. (1987). Resistance and susceptibility of mice to Leishmania major: a view from Melbourne. Annales de l'Institut Pasteur. Immunology 138, 738–43.CrossRefGoogle ScholarPubMed
Mitchell, G. F., Marchalonis, J. J., Smith, P. M., Nicholas, W. L. & Warner, N. L. (1977). Studies on immune responses to larval cestodes in mice. Immunoglobulins associated with the larvae of Mesocestoides corti. Australian Journal of Experimental Biology and Medical Science 55, 187211.Google Scholar
Mitchell, G. F., Rajasekariah, G. R. & Rickard, M. D. (1980). A mechanism to account for mouse strain variation in resistance to the larval cestode, Taenia taeniaeformis. Immunology 39, 481–9.Google Scholar
Moloney, N. A., Hinchcliffe, P. & Webbe, G. (1987). Loss of resistance to reinfection with Schistosoma japonicum in mice after treatment with praziquantel. Transactions of the Royal Society of Tropical Medicine and Hygiene 81, 247–54.CrossRefGoogle ScholarPubMed
Mossman, T. R. & Coffman, R. L. (1987). Two types of mouse helper T-cell clone. Immunology Today 8, 223–7.Google Scholar
Musoke, A. J. & Williams, J. F. (1975). The immunological responses of the rat to infection with Taenia taeniaeformis. V. Sequence of appearance of protective immunoglobulins and the mechanism of action of 7Sγ2a antibodies. Immunology 29, 855–66.Google ScholarPubMed
Nussenzweig, R. S., Merryman, C. & Benacerraf, B. (1964). Electrophoretic separation and properties of mouse antihapten antibodies involved in passive cutaneous anaphylaxis and passive hemolysis. Journal of Experimental Medicine 120, 315–28.Google Scholar
Ogilvie, B. M. & Wilson, R. J. M. (1976). Evasion of the immune response by parasites. British Medical Bulletin 32, 177–81.CrossRefGoogle ScholarPubMed
Parker, J. C., Whiteman, M. D. & Richter, C. B. (1978). Susceptibility of inbred and outbred mouse strains to Sendai virus and prevalence of infection in laboratory rodents. Infection and Immunity 19, 123–30.Google Scholar
Patarroyo, M. E., Amador, R., Clavijo, P., Moreno, A., Guzman, F., Romero, P., Tascon, R., Franco, A., Murillo, L. A., Ponton, G. & Trujillo, G. (1988). A synthetic vaccine protects humans against challenge with asexual blood stages of Plasmodium falciparum malaria. Nature, London 332, 158–61.CrossRefGoogle ScholarPubMed
Ramalho-Pinto, F. J., De Rossi, R. & Smithers, S. R. (1979). Murine schistosomiasis mansoni: anti-schistosomula antibodies and the IgG subclasses involved in the complenent-and eosinophil-mediated killing of schistosomula in vitro. Parasite Immunology 1, 295308.Google Scholar
Reiner, N. E., Ng, W. & Mcmaster, W. R. (1987). Parasite- accessory cell interactions in murine leishmaniasis. II. Leishmania donovani suppresses macrophage expression of Class I and Class II major histocompatibility complex gene products. Journal of Immunology 138, 1926–32.Google Scholar
Rickard, M. D. & Williams, F. J. (1982). Hydatidosis/cysticercosis: immune mechanisms and immunization against infection. Advances in Parasitology 21, 229–96.Google Scholar
Schofield, L., Villaquiran, J., Ferreira, A., Schellekens, H., Nussenzweig, R. & Nussenzweig, V. (1987). γ-interferon, CD8+ T cells and antibodies required for immunity to malaria sporozoites. Nature, London 330, 664–6.CrossRefGoogle ScholarPubMed
Smith, D. B., Davern, K. M., Board, P. G., Tiu, W. U., Garcia, E. G. & Mitchell, G. F. (1986). M r 26000 antigen of Schistosoma japonicum recognized by resistant WEHI 129/J mice is a parasite glutathione S-transferase. Proceedings of the National Academy of Sciences, USA 83, 8703–7.Google Scholar
Smithers, S. R., Simpson, A. J. G., Yi, X. Y., Omer-Ali, P., Kelly, C. & Mclaren, D. J. (1987). The mouse model of schistosome immunity. Acta tropica 44, 2130.Google Scholar
Snapper, C. M., Peschel, C. & Paul, W. E. (1988). IFN-γ stimulates IgG2a secretion by murine B cells stimulated with bacterial lipopolysaccharide. Journal of Immunology 140, 2121–7.Google Scholar
Suquet, C., Green-Edwards, C. & Leid, R. w. (1984). Isolation and partial characterization of a Taenia taeniaeformis metacestode proteinase inhibitor. International Journal for Parasitology 14, 165–72.Google Scholar
Tiu, W. U., Davern, K. M., Garcia, E. G., Moll, H. & Mitchell, G. F. (1988). Monoclonal antibodies reacting with Schistosoma japonicum eggs and their target epitopes. Acta tropica (in the Press).Google Scholar
Trager, W. & Jensen, J. B. (1976). Human malaria parasites in continuous culture. Science 193, 673–5.CrossRefGoogle ScholarPubMed
Underdown, B. J., Roberts-Thomson, I. C., Anders, R. F. & Mitchell, G. F. (1981). Giardiasis in mice: studies on the characteristics of chronic infection in C3H/He mice. Journal of Immunology 126, 669–72.Google Scholar
Van Snick, J. L. & Masson, P. L. (1979). Age-dependent production of IgA and 1gM autoantibodies against IgG2a in a colony of 129/Sv mice. Journal of Experimental Medicine 149, 1519–30.CrossRefGoogle Scholar
Van Snick, J. L. & Masson, P. L. (1980). Incidence and specificities of IgA and 1gM anti-IgG autoantibodies in various mouse strains and colonies. Journal of Experimental Medicine 151, 4555.Google Scholar
Weiss, W. R., Sedegah, M., Beaudoin, R. L., Miller, L. H. & Good, M. F. (1988). CD8+ T cells (cytotoxic/suppressors) are required for protection in mice immunized with malaria sporozoites. Proceedings of the National Academy of Sciences, USA 85, 573–6.Google Scholar
Williams, J. F. (1986). Prospects for prophylaxis of parasitism In Parasitology-Quo Vadit? (ed. Howell, M. J.), pp. 711–19. Canberra: Australian Academy of Science.Google Scholar
Yi, X., Simpson, A. J. G., De Rossi, R. & Smithers, S. R. (1986). The presence of antibody in mice chronically infected with Schistosoma mansoni which blocks in vitro killing of schistosomula. Journal of Immunology 137, 3955–8.Google Scholar