Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T21:47:22.093Z Has data issue: false hasContentIssue false

Variation in the vector competence of Aedes polynesiensis for Wuchereria bancrofti

Published online by Cambridge University Press:  06 April 2009

A.-B. Failloux
Affiliation:
Institut Territorial de Recherches Médicates Louis Malardé, B.P. 30, Papeete, Tahiti, Polynésie, Fran¸aise
M. Raymond
Affiliation:
Institut des Sciences de l' Evolution (CNRS, URA 327), Laboratoire de Génétique et Environnement, Université de Montpellier II (CC 65), 34095 Montpellier, France
A. Ung
Affiliation:
Institut Territorial de Recherches Médicates Louis Malardé, B.P. 30, Papeete, Tahiti, Polynésie, Fran¸aise
P. Glaziou
Affiliation:
Institut Territorial de Recherches Médicates Louis Malardé, B.P. 30, Papeete, Tahiti, Polynésie, Fran¸aise
P. M. V. Martin
Affiliation:
Institut Territorial de Recherches Médicates Louis Malardé, B.P. 30, Papeete, Tahiti, Polynésie, Fran¸aise
N. Pasteur
Affiliation:
Institut des Sciences de l' Evolution (CNRS, URA 327), Laboratoire de Génétique et Environnement, Université de Montpellier II (CC 65), 34095 Montpellier, France

Summary

The vector competences of 6 geographic strains of Aedes polynesiensis for Wuchereria bancrofti were studied using two types of experimental infections. Experimental infection of laboratory-bred mosquitoes fed on the carriers' forearms with different levels of microfilaraemia showed that microfilariae (mf) uptake was directly proportional to the carrier's mf density and, as mf densities decreased, concentration capacity of Ae. polynesiensis increased. It was also shown that infection has an important effect on mosquito mortality, and that the mortality rate differed among mosquito strains. In infections using artificial feeders, the mf uptake was closely regulated, thus showing differences in the vectorial efficiency of Ae. polynesiensis related to the geographic origin of the mosquito strain. The mosquitoes from the Society archipelago were more efficient intermediate hosts than geographically distant strains when infected with W. bancrofti from an island within the archipelago (Tahiti). Mosquito strains from the Society archipelago developed the highest proportion of infective-stage larvae and exhibited the lowest mortality rate when infected with sympatric Tahitian W. bancrofti.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bain, O. (1976). Traversée de la paroi stomacale du vecteur par les microfilaires: techniques d'étude utilisées, importance épidémiologique. Bulletin O.M.S. 54, 397401.Google Scholar
Beaver, P. C. (1970). Filariasis without microfilaremia. American Journal of Tropical Medicine and Hygiene 19, 181–9.CrossRefGoogle ScholarPubMed
Beaver, P. C. & Jung, R. C. (1985). Animal Agents and Vectors of Human Disease. Philadelphia: Lea & Febiger.Google Scholar
Belkin, J. N. (1962). The Mosquitoes of the South Pacific. Vols I and II. University of California Press.Google Scholar
Bertram, D. S. & Bird, R. G. (1961). Studies on mosquitoborne viruses in their vector. 1. The normal fine structure of the midgut epithelium of adult female Aedes aegypti L. and the functional significance of its modifications following a bloodmeal. Transactions of the Royal Society of Tropical Medicine and Hygiene 55, 404–23.CrossRefGoogle Scholar
Bonnet, D. D. & Chapman, H. (1958). The larval habitats of Aedes polynesiensis in Tahiti and methods of control. American Journal of Tropical Medicine and Hygiene, 7 512–18.CrossRefGoogle ScholarPubMed
Brengues, J. & Bain, O. (1972). Passage des microfilaries de l'estomac vers l'hémocéle du vecteur, dans les couples Wuchereria bancrofti–Anopheles gambiae A, W. bancrofti–Aedes aegypti et Setaria labiotopapillosa–Aedes aegypti. Cahiers ORSTOM Série Entomologie Medicate et Parasitologie 20, 235–49.Google Scholar
Brengues, J. (1975). La filariose de Bancroft en Afrique de l' Ouest. Mémoires ORSTOM 79, 299.Google Scholar
Briegel, H., Lea, A. O. & Klowden, M. J. (1979). Hemoglobinometry as a method for measuring blood meal sizes of mosquitoes (Diptera: Culicidae). Journal of Medical Entomology 15, 235–8.CrossRefGoogle Scholar
Buxton, P. A. & Hopkins, G. H. E. (1927). Researches in Polynesia and Melanesia: an account of investigations in Samoa, Tonga, the Ellice group, and the New Hebrides in 1024–1925. London School of Hygiene and Tropical Medicine 1, 1260.Google Scholar
Cartel, J. L., Nguyen, N. L., Spiegel, A., Mouliat-Pelat, J.-P., Plichart, R., Martin, P. M. V., Manuellan, A.-B. & Lardeux, F. (1992). Wuchereria bancrofti infection in human and mosquito populations of a Polynesian village ten years after interruption of mass chemoprophylaxis with diethylcarbamazine. Transactions of the Royal Society of Medicine and Hygiene 86, 414–16.CrossRefGoogle ScholarPubMed
Coluzzi, M. & Trabucchi, R. (1968). Importanza dell'armatura bucco-faringea in Anopheles e Culex in relazione alle infezioni con Dirofilaria. Parasitologia 10, 4759.Google Scholar
Crampton, J. M., Caller, R., Sinden, R. E. & Crisanti, A., (1993). La lutte génétique centre les moustiques. La Recherche 24, 1218–27.Google Scholar
Defoliart, G. R., Grimstad, P. R. & Watts, D. M. (1987). Advances in mosquito-borne arbovirus/vector research. Annual Review of Entomology 32, 479505.CrossRefGoogle ScholarPubMed
Desowitz, R. S. (1971). Notes on the simplified membrane filtration method for the diagnosis of microfilaremia. W.H.O./FIL (mimeographed document).Google Scholar
Desowitz, R. S. & Chellapah, W. T. (1962). The transmission of Brugia sp. through Culex pipiens fatigans, the effect of age and prior non-infective blood meals on the infection rate. Transactions of the Royal Society of Tropical Medicine and Hygiene 56, 121–5.CrossRefGoogle ScholarPubMed
Desowitz, R. S. & Southgate, B. A. (1973). Studies on filariasis in the Pacific. 2. The persistence of microfilaraemia in diethylcarbamazine-treated populations of Fiji and Western Samoa: diagnostic application of the membrane filtration technique. Southeast Asian Journal of Tropical Medicine and Public Health 4, 179–83.Google ScholarPubMed
Failloux, A. B. (1994). Variabilité génétique d' Aedes (Stegomyia) polynesiensis, Marks, 1951, le vecteur de la filariose de Bancroft en Polynésie française. Résistance aux insecticides, différenciation génétique et compétence vectorielle. Thése de doctorat, Université Paris XI.Google Scholar
Failloux, A. B., Chanteau, S., Chungue, E., Loncke, S. & Sechan, Y. (1991). Oral infection of Aedes polynesiensis by Wuchereria bancrofti by using Parafilm membrane feeding. Journal of the American Mosquito Control Association 7, 660–2.Google ScholarPubMed
Galliard, H., Mille, R. & Robinson, W. A. (1949). La filariose è Wuchereria bancrofti var. pacifica è Tahiti et dans l'archipel de la Société. Annales de Parasitologie 24, 3048.Google Scholar
Gordon, R. M. & Lumsden, W. H. R. (1939). A Study of the behaviour of the mouth-parts of mosquitoes when taking up blood from living tissue; together with some observations on the ingestion of microfilariae. Annals of Tropical Medicine and Parasitologie 33, 259–78.CrossRefGoogle Scholar
Hairston, N. G. & De Meillon, B. (1968). On the inefficiency of transmission of Wuchereria bancrofti from mosquito to human host. Bulletin of the World Health Organization 38, 935.Google ScholarPubMed
Hairston, N. G. & Jachowski, L. A. (1968). Analysis of the Wuchereria bancrofti population in the people of American Samoa. Bulletin of the World Health Organization 38, 2959.Google Scholar
Hare, S. & Nasci, R. (1986). Effects of sublethal exposure to Bacillus thuringiensis var. israelensis on larval development and adult size in Aedes aegypti. Journal of the American Mosquito Control Association 2, 325–8.Google ScholarPubMed
Ichimori, K. (1989). Correlation of mosquito size, blood meal size and malarial oocyst production. Japanese Journal of Zoology 2, 81–5.Google Scholar
Kartman, L. (1954). Suggestions concerning an index of experimental filaria infection in mosquitoes. American Journal of Tropical Medicine and Hygiene 3, 329–37.CrossRefGoogle ScholarPubMed
Kassem, H. A., Fryauff, D. J., Shehata, M. G. & el Sawaf, B. M. (1993). Enzyme polymorphism and genetic variability of one colonized and several field populations of Phlebotomus papatasi (Diptera: Psychodidae). Journal of Medical Entomology 30, 407–13.CrossRefGoogle ScholarPubMed
Kessel, J. F. (1957). An effective program for the control of filariasis in Tahiti. Bulletin of the World Health Organization 16, 633.Google ScholarPubMed
Kitthawee, S., Ehman, J. D. & Sattabonghot, J. (1990). Evaluation of survival potential and malaria susceptibility among size classes of laboratory-reared Anopheles dirus. American Journal of Tropical Medicine and Hygiene 43, 328–32.CrossRefGoogle ScholarPubMed
Laurence, B. R. (1989). The global dispersal of Bancroftian filariasis. Parasitology Today 5, 260–4.CrossRefGoogle ScholarPubMed
Lowrie, R. C., Eberhard, M. L., Lammie, P. J., Raccurt, C. P., Katz, S. P. & Duverseau, Y. T. (1989). Uptake and development of Wuchereria bancrofti in Culex quinquefasciatus that fed on Haitian carriers with different microfilaria densities. American Journal of Tropical Medicine and Hygiene 41, 429–35.CrossRefGoogle ScholarPubMed
Macdonald, W. W. (1962). The genetic basis of susceptibility to the infection with semi-periodic Brugia malayi in Aedes aegypti. Annals of Tropical Medicine and Parasitology 56, 373–82.CrossRefGoogle Scholar
Macdonald, W. W. (1963). Development of B. malayi in the thorax of susceptible and refractory Aedes aegypti. Transactions of the Royal Society of Tropical Medicine and Hygiene 57, 3.Google Scholar
Macdonald, W. W. & Ramachandran, C. P. (1965). The influence of the gene fm (filarial susceptibility, Brugia malayi) on the susceptibility of Aedes aegypti to seven strains of Brugia, Wuchereria and Dirofilaria. Annals of Tropical Medicine and Parasitology 59, 6473.CrossRefGoogle ScholarPubMed
MacGreevy, P. B., MacClelland, G. A. H. & Lavoipierre, M. M. J. (1974). Inheritance of susceptibility to Dirofilaria immitis infection in Aedes aegypti. Annals of Tropical Medicine and Parasitology 68, 97109.CrossRefGoogle Scholar
MacGreevy, P. B., Bryan, J. H., Oothuman, P. & Kolstrup, N. (1978). The lethal effects of the cibarial and pharyngeal armatures of mosquitoes on microfilariae. Transactions of the Royal Society of Tropical Medicine and Hygiene 72, 361–8.CrossRefGoogle Scholar
Marks, E. N. (1954). A review of Aedes scutellaris subgroup with a study of variation in Aedes pseudoscutellaris (Theobald) (Diptera: Culicidae). British Museum (Natural History) 3, 349414.Google Scholar
May, R. M. & Anderson, R. M. (1983). Parasite–host coevolution. In Coevolution (ed. Sinauer Associates Inc.), pp. 186206.Google ScholarPubMed
Paulson, S. L. & Hawley, W. A. (1991). Effect of body size on the vector competence of field and laboratory populations of Aedes triseriatus for La Crosse virus. Journal of the American Mosquito Control Association 1, 170–5.Google Scholar
Pichon, G. (1974). Relations mathématiques entre le nombre des microfilaires ingérées et le nombre des parasites chez différents vecteurs naturels ou expérimentaux de filarioses. Cahiers ORSTOM Série Entomologie Médicate et Parasitologie 4, 199216.Google Scholar
Prod'hon, J., Pichon, G. & Riviere, F. (1980). Etude quantitative de la réduction parasitaire stomacale chez les vecteurs de filarioses. Cahiers ORSTOM Série Entomologie Médicate et Parasitologie 18, 1325.Google Scholar
Ramachandran, C. P. (1966). Biological aspects in the transmission of Brugia malayi by Aedes aegypti in the laboratory. Journal of Medical Entomology 3, 239.CrossRefGoogle ScholarPubMed
Ramachandran, C. P. & Zaini, M. A. (1968). Studies On the transmission of sub-periodic Brugia malayi by Aedes (Finlaya) togoi in the laboratory. II. The development of the parasite to the infective form; the relationship between concentration of microfilariae in the vertebrate host and infection in the mosquitoes. Medical Journal of Malaya 3, 198203.Google Scholar
Raymond, M. & Rousset, F. (1995). An exact test for population differentiation. Evolution (in the Press.).CrossRefGoogle ScholarPubMed
Reisen, W. K. (1975). Intraspecific competition in Anopheles stephensi Liston. Mosquito News, 473–82.Google Scholar
Rosen, L. (1955). Observations on the epidemiology of human filariasis in French Oceania. American Journal of Hygiene 61, 219–48.Google Scholar
Rutledge, L. C., Ward, R. A. & Gould, D. J. (1964). Studies on the feeding response of mosquitoes to nutritive solutions in a new membrane feeder. Mosquito News 24, 407–19.Google Scholar
Samarawickrema, W. A., Spears, G. F. S., Sone, F., Ichimori, K. & Cummings, R. F. (1985). Filariasis transmission in Samoa. I. Relation between density of microfilariae and larval density in laboratory bred and wild caught Aedes (Stegomyid) polynesiensis (Marks) and wild caught Aedes (Finlaya) samoanus (Gruenberg). Annals of Tropical Medicine and Parasitology 79, 89100.CrossRefGoogle Scholar
Tabachnick, W. J., Wallis, G. P., Aitken, T. H. G., Miller, B. R., Amato, G. D., Lorenz, L., Powell, J. R. & Beaty, B. J. (1985). Oral infection of Aedes aegypti with yellow fever virus: geographic variation and genetic considerations. American Journal of Tropical Medicine and Hygiene 34, 1219–24.CrossRefGoogle ScholarPubMed
Vernick, K. D., Collins, F. H. & Gwadz, R. W. (1989). A general system of resistance to malaria infection in Anopheles gambiae controlled by two main genetic loci. American Journal of Tropical Medicine and Hygiene 40, 585–95.CrossRefGoogle ScholarPubMed
Wu, W.-K. (1989). Genetic basis of susceptibility and refractoriness of Phlebotomus papatasi (Diptera: Psychodidae) to infection with Leishmania major (Kinetoplastida: Trypanosomatidae). Ph.D. dissertation, Yale University, New Haven, CT.Google Scholar
Zielke, E. (1976). Studies on quantitative aspects of the transmission of Wuchereria bancrofti. Tropical Medicine and Parasitology 27, 160–4.Google ScholarPubMed