Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T13:41:53.690Z Has data issue: false hasContentIssue false

Trypanosoma cruzi glutathione-binding proteins: immunogenicity during human and experimental Chagas' disease

Published online by Cambridge University Press:  06 April 2009

B. Plumas-Marty
Affiliation:
Centre d'immunologie et de Biologie Parasitaire, Unité Mixte INSERM U.167 CNRS 624, Institut Pasteur, 59019 Lille, France
C. Verwaerde
Affiliation:
Centre d'immunologie et de Biologie Parasitaire, Unité Mixte INSERM U.167 CNRS 624, Institut Pasteur, 59019 Lille, France
M. Loyens
Affiliation:
Centre d'immunologie et de Biologie Parasitaire, Unité Mixte INSERM U.167 CNRS 624, Institut Pasteur, 59019 Lille, France
P. Velge
Affiliation:
Centre d'immunologie et de Biologie Parasitaire, Unité Mixte INSERM U.167 CNRS 624, Institut Pasteur, 59019 Lille, France
A. Taibi
Affiliation:
Centre d'immunologie et de Biologie Parasitaire, Unité Mixte INSERM U.167 CNRS 624, Institut Pasteur, 59019 Lille, France
M. F. Cesbron
Affiliation:
Centre d'immunologie et de Biologie Parasitaire, Unité Mixte INSERM U.167 CNRS 624, Institut Pasteur, 59019 Lille, France
A. Capron
Affiliation:
Centre d'immunologie et de Biologie Parasitaire, Unité Mixte INSERM U.167 CNRS 624, Institut Pasteur, 59019 Lille, France
M. A. Ouaissi
Affiliation:
Centre d'immunologie et de Biologie Parasitaire, Unité Mixte INSERM U.167 CNRS 624, Institut Pasteur, 59019 Lille, France

Summary

Following purification by affinity chromatography, three glutathione-binding proteins (TcGBP) of 45, 30, and 25 kDa were co-purified from Trypanosoma cruzi epimastigotes. Using 1-chloro-2,4 dinitrobenzene as substrate, a glutathione S-transferase activity of 70 nmol/min/mg of proteins was detected in the GSH binding fraction. An increased expression of TcGBP and total GST activity was observed upon incubation of parasites with phenobarbital, which is an inducer of GST synthesis. Immunofluorescence and electron microscopic experiments demonstrated that TcGBP were expressed by all developmental stages of the parasite, including infective forms. The expression of these proteins by intracellular dividing amastigotes could be in favour of a potential defensive role of these molecules against host attack. Results obtained by immunoprecipitation of in vitro translation products using anti-TcGBP antisera suggested that these three polypeptides are not glycosylated. In addition, antibodies directed against the TcGBP were found in a high proportion of T. cruzi-infected chronic chagasic patients' sera and in sera of chronically infected BALB/c mice. In contrast, acute chagasic patients' sera and acute-phase mouse sera were found to be poorly reactive with these proteins. Our results identify a new class of potential target antigens, which may be essential for the development of T. cruzi in its host. Their protective role in experimental models deserves to be investigated.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agosin, M., Cherry, J., Pedemonte, J., White, R. (1984). Cytochrome P-450 in culture forms of Trypanosoma cruzi. Comparative Biochemistry and Physiology 78C, 127–32.Google ScholarPubMed
Agosin, M., Naquira, C., Paulin, J. & Capdevila, J. (1976). Cytochrome P-450 and drug metabolism in Trypanosoma cruzi: effects of phenobarbital. Science 194, 195–7.CrossRefGoogle ScholarPubMed
Andrews, N. W., Hong, K. S., Robbins, E. S. & Nussenzweig, V. (1987). Stage specific surface antigens during the morphogenesis of vertebrate forms of Trypanosoma cruzi. Experimental Parasitology 64, 474–84.CrossRefGoogle ScholarPubMed
Arrick, B. A., Griffith, O. W. & Cerami, A. (1981). Inhibition of glutathione synthesis as a chemotherapeutic strategy for trypanosomiasis. Journal of Experimental Medicine 153, 720–5.CrossRefGoogle ScholarPubMed
Bolton, A. E. & Hunter, W. M. (1973). The labelling of proteins to high specific radioactivities by conjugation to a 125I containing acylating agent. The Biochemical Journal 133, 529–39.CrossRefGoogle ScholarPubMed
Boveris, A., Sies, H., Martino, E. E., Docampo, R., Turrens, J. F. & Stoppani, A. O. M. (1980). Deficient metabolism utilization of hydrogen peroxide in Trypanosoma cruzi. The Biochemical Journal 188, 643–8.CrossRefGoogle ScholarPubMed
Brener, Z. A. (1973). Biology of Trypanosoma cruzi. Annual Review of Microbiology 27, 347–83.CrossRefGoogle ScholarPubMed
Capron, A., Balloul, J. M., Grezel, D., Grzych, J. M., Wolowczuk, I., Auriault, C., Boulanger, D., Capron, M. & Pierce, R. J. (1990). Progress towards vaccination against schistosomiasis. In Molecular Aspects of Immune Response and Infectious Diseases (ed. Kiyono, H., Jirillo, E. & DeSimone, C.), pp. 183–91. New York: Raven Press Ltd.Google Scholar
Cavallesco, R. & Pereira, M. E. A. (1988). Antibody of Trypanosoma cruzi neuraminidase enhances infection in vitro and identify a subpopulation of trypomastigotes. Journal of Immunology 140, 617–25.CrossRefGoogle ScholarPubMed
Chirgwin, J. M., Przybyla, A. E., Macdonald, R. J. & Rutter, W. J. (1979). Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18, 5294–9.CrossRefGoogle ScholarPubMed
Clark, A. G. (1989). The comparative enzymology of the glutathione S-transferases from non-vertebrate organisms. Comparative Biochemistry and Physiology 92B, 419–46.Google ScholarPubMed
Cornette, J., Capron, A. & Ouaissi, M. A. (1988). Trypanosoma cruzi: fibronectin promotes uptake of epimastigote culture forms by human neutrophils and monocytes. International Archives of Allergy and Applied Immunology 86, 139–46.CrossRefGoogle ScholarPubMed
Dragon, E. A., Brothers, V. M., Wrightsman, R. A. & Manning, J. (1985). A Mr 90 000 surface polypeptide of Trypanosoma cruzi as a candidate for Chagas' disease diagnostic antigen. Molecular and Biochemical Parasitology 16, 213–29.CrossRefGoogle Scholar
Fairlamb, A. H. & Cerami, A. (1985). Identification of a novel, thiol-containing co-factor essential for glutathione reductase enzyme activity in trypanosomatids. Molecular and Biochemical Parasitology 14, 187–98.CrossRefGoogle ScholarPubMed
Goldenberg, S., Contreras, V. T., Salles, J. M., Franco, M. P. A. L., Bonaldo, M. C., Valle, D., Concalves, A. M. & Morel, C. L. (1983). Perspectives for vaccinations against Chagas' disease through biotechnology. II. Gene expression in Trypanosoma cruzi trypomastigotes and cell free translation of mRNA coding for relevant antigens. In New Approaches to Vaccine Development. Proceedings of a Meeting organized by the W.H.O. 442.Google Scholar
Gonzalez, J., Araguth, M. F. & Yoshida, N. (1991). Resistance to acute Trypanosoma cruzi infection resulting from immunization of mice with a 90-kilodalton antigen from metacyclic trypomastigotes. Infection and Immunity 58, 863–7.CrossRefGoogle Scholar
Habig, W. H., Pabst, M. J. & Jakoby, W. B. (1974). Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry 249, 7130–9.CrossRefGoogle ScholarPubMed
Jaffe, C. L., Grimaldi, G. & Mcmahon-Pratt, D. (1984). The cultivation and cloning of Leishmania. In Genes and Antigens of Parasites: a Laboratory Manual, 2nd Edn (ed. Moser, C. M.), p. 47. Rio de Janeiro: Fundaçao Oswaldo Cruz.Google Scholar
Ketterer, B., Meyer, D. J. & Clark, A. G. (1988). Soluble glutathione transferase enzymes. In Glutathione Conjugation: Mechanisms and Biological Significance (ed. Sies, H. & Ketterer, B.), pp. 73135. London: Academic Press.Google Scholar
Krauth-Siegel, L., Enders, B., Henderson, G. B., Fairlamb, A. H. & Schirmer, R. H. (1978). Trypanothione reductase from Trypanosoma cruzi. Purification and characterization of the crystalline enzyme. European Journal of Biochemistry 164, 123–8.CrossRefGoogle Scholar
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature, London 227, 680–5.CrossRefGoogle ScholarPubMed
Lemesre, J. L., Afchain, D., Orozco, O., Loyens, M., Breniere, F. S., Desjeux, P., Carlier, Y., Martin, U., Nogueira-Queiroz, A., Le Ray, D. & Capron, A. (1986). Specific and sensitive immunological diagnosis of Chagas' disease by competitive antibody enzyme immunoassay using a Trypanosoma cruzi-specific monoclonal antibody. American Journal of Tropical Medicine and Hygiene 35, 8693.CrossRefGoogle ScholarPubMed
Ley, V., Andrews, N. W., Robbins, E. S. & Nussenzweig, V. (1988). Amastigotes of Trypanosoma cruzi sustain an infective cycle in mammalian cells. Journal of Experimental Medicine 168, 649–59.CrossRefGoogle ScholarPubMed
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, J. R. (1951). Protein measurement with Folin phenol reagent. Journal of Biological Chemistry 193, 265–75.CrossRefGoogle ScholarPubMed
Mauel, J. (1984). Mechanisms of survival of protozoan parasites in mononuclear phagocytes. Parasitology 88, 579–92.CrossRefGoogle ScholarPubMed
Mccabe, R. E. & Mullins, B. T. (1990). Failure of Trypanosoma cruzi to trigger the respiratory burst of activated macrophages. Journal of Immunology 144, 2384–6.CrossRefGoogle ScholarPubMed
Mitchell, G. (1989). Glutathione S-transferases-potential components of anti-schistosome vaccines? Parasitology Today 5, 34–7.CrossRefGoogle ScholarPubMed
Moncada, C., Repetto, Y., Letelier, M. E. & Morello, A. (1989). Role of glutathione in the susceptibility of Trypanosoma cruzi to drugs. Comparative Biochemistry and Physiology 94, 8791.Google ScholarPubMed
Morello, A. (1988). The biochemistry of the mode of action of drugs and the detoxication mechanisms in Trypanosoma cruzi. Comparative Biochemistry and Physiology 90, 112.Google ScholarPubMed
Orozco, O., Afchain, D., Rodriguez, C., Ovlaque, G., Loyens, M. & Capron, A. (1982). Production d'un anticorps monoclonal anti-antigène 5 de Trypanosoma cruzi. Comptes Rendus de l'académie des Sciences, Paris 295, 783–5.Google ScholarPubMed
Ouaissi, M. A., Cornette, J. & Capron, A. (1986). Identification and isolation of Trypanosoma cruzi trypomastigotes cell surface protein with properties expected of a fibronectin receptor. Molecular and Biochemical Parasitology 19, 201–11.CrossRefGoogle ScholarPubMed
Ouaissi, M. A., Taibi, A., Cornette, J., Velge, P., Marty, B., Loyens, M., Esteva, M., Rizvi, F. S. & Capron, A. (1990). Characterization of major surface and excretory–secretory immunogens of Trypanosoma cruzi trypomastigotes and identification of potential protective antigen. Parasitology 100, 115–24.CrossRefGoogle ScholarPubMed
Pickett, C. B. (1989). Glutathione S-transferases: gene structure, regulation and biological function. Annual Review of Biochemistry 58, 743–64.CrossRefGoogle ScholarPubMed
Pickett, C. B., Wells, W. & Lu, A. Y. H. (1981). Induction of translationally active rat liver glutathione S-transferase B messenger RNA by phenobarbital. Biochemical and Biophysical Research Communications 99, 1102–10.CrossRefGoogle ScholarPubMed
Piras, M. M., Piras, R. & Henriquez, D. (1982). Changes in morphology and infectivity of cell-culture derived trypomastigotes of Trypanosoma cruzi. Molecular and Biochemical Parasitology 6, 6781.CrossRefGoogle ScholarPubMed
Repetto, Y., Letelier, M. E., Aldunate, J. & Morello, A. (1986). The γ-glutamyltranspeptidase of Trypanosoma cruzi (1986). Comparative Biochemistry and Physiology 87B, 73–8.Google Scholar
Roth, J., Benedayan, M., Carlemalm, E., Vilenger, W. & Garavito, M. (1981). Enhancement of structural preservation of immunocytochemical staining in low temperature embedded pancreatic tissue. Journal of Histochemistry and Cytochemistry 29, 663–71.CrossRefGoogle ScholarPubMed
Scharfstein, J., Luquetti, A., Murta, A. C. M., Senna, M., Reznde, J. M., Rassi, A. & MendoÇA-Previato, L. (1985). Chagas' disease: serodiagnosis with purified GP25 antigen. American Journal of Tropical Medicine and Hygiene 34, 1153–60.CrossRefGoogle ScholarPubMed
Schofield, C. J. (1985). Control of Chagas' disease vectors. British Medical Bulletin 41, 187–94.CrossRefGoogle ScholarPubMed
Scott, M. T. & Snary, D. (1979). Protective immunization in mice using cell surface glycoprotein from Trypanosoma cruzi. Nature, London 73, 282–3.Google Scholar
Sexton, J. L., Milner, A. R., Panaccio, M., Waddington, J., Wijffels, G., Chandler, D., Thompson, C., Wilson, L., Spithill, T. W., Mitchell, G. F. & Campbell, N. J. (1990). Glutathione S-transferase. Novel vaccine against Fasciola hepatica in sheep. Journal of Immunology 145, 3905–10.CrossRefGoogle ScholarPubMed
Simons, P. C. & Vander, JAGT, D., L. (1981). Purification of glutathione S-transferase by glutathione-affinity chromatography. Methods in Enzymology 77, 235–7.CrossRefGoogle ScholarPubMed
Slot, J. L. & Geuze, H. J. (1985). A new method of preparing gold probes for multiple-labelling cytochemistry. European Journal of Cell Biology 38, 8793.Google Scholar
Snary, D. (1983). Cell surface glycoproteins of Trypanosoma cruzi: protective immunity in mice and antibody levels in human chagasic sera. Transactions of the Royal Society of Tropical Medicine and Hygiene 77, 126–9.CrossRefGoogle ScholarPubMed
Taylor, J. B., Vidal, A., Torpier, G., Meyer, D. J., Roitsch, C., Balloul, J. M., Southan, C., Sondermeyer, P., Pemble, S., Lecocq, J. P., Capron, A. & Ketterer, B. (1988). The glutathione transferase activity and tissue distribution of a cloned Mr28K protective antigen of Schistosoma mansoni. The EMBO Journal 7, 465–72.CrossRefGoogle ScholarPubMed
Tiu, W. U., Davern, K. M., Wright, M. D., Board, P. G. & Mitchell, G. F. (1988). Molecular and serological characteristics of the glutathione S-transferases of Schistosoma japonicum and Schistosoma mansoni. Parasite Immunology 10, 693706.CrossRefGoogle ScholarPubMed
Towbin, H., Staehelin, T. & Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proceedings of the National Academy of Sciences, USA 76, 4350–4.CrossRefGoogle ScholarPubMed
Yawetz, A. & Agosin, M. (1979). Epoxide hydrase in Trypanosoma cruzi epimastigotes. Biochimica et Biophysica Acta 585, 210–19.CrossRefGoogle ScholarPubMed
Yawetz, A. & Agosin, M. (1981). Purification of the glutathione S-transferase of Trypanosoma cruzi. Comparative Biochemistry and Physiology 68B, 237–43.Google Scholar
Yoshida, N. (1986). Trypanosoma cruzi: Recognition of trypomastigote surface antigens by lytic antisera from mice resistant to acute infection. Experimental Parasitology 61, 184–91.CrossRefGoogle ScholarPubMed