Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T22:06:46.608Z Has data issue: false hasContentIssue false

Transmission, infectivity and survival of Diplostomum spathaceum cercariae

Published online by Cambridge University Press:  09 October 2003

A. KARVONEN
Affiliation:
Department of Biological and Environmental Science, P.O. Box 35, 40014, University of Jyväskylä, Finland
S. PAUKKU
Affiliation:
Department of Biological and Environmental Science, P.O. Box 35, 40014, University of Jyväskylä, Finland
E. T. VALTONEN
Affiliation:
Department of Biological and Environmental Science, P.O. Box 35, 40014, University of Jyväskylä, Finland
P. J. HUDSON
Affiliation:
Biology Department, Penn State University, 208 Mueller Lab, University Park, Philadelphia 16802, USA Department of Biological Sciences, University of Stirling, Stirling FK9 4LA, Scotland

Abstract

The transmission dynamics of the cercariae of Diplostomum spathaceum were investigated under laboratory conditions using cercariae collected from naturally infected Lymnaea stagnalis. Cercariae were kept in a constant temperature of 20 °C and the survival and infectivity to naïve young rainbow trout recorded at 3-h intervals until few cercariae were alive. Mortality initially remained constant but increased rapidly after 20 h. While a model of constant mortality fitted the survival data, an age-dependent model provided a better fit and implied that cercariae tended to carry similar quantities of resources and once these were exhausted the cercariae died. Cercarial infectivity also showed an age-dependent pattern although infectivity tended (P=0·09) to increase with age over the first 6 h of life and then fall. The per capita transmission rate of cercariae was investigated by experimentally infecting rainbow trout under standardized conditions, first with an increasing cercarial density and second, by keeping density constant but increasing numbers of cercariae. The per capita transmission rate was frequency dependent and averaged 0·341/h (±0·036).

Type
Research Article
Copyright
© 2003 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

ALTIZER, S. M., OBERHAUSER, K. S. & BROWER, L. P. (2000). Associations between host migration and the prevalence of a protozoan parasite in natural populations of adult monarch butterflies. Ecological Entomology 25, 125139.CrossRefGoogle Scholar
ANDERSON, R. M. & MAY, R. M. (1978). Regulation and stability of host–parasite population interactions. I Regulatory processes. Journal of Animal Ecology 47, 219249.Google Scholar
ANDERSON, R. M. & MAY, R. M. (1991). Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford.
ANDERSON, R. M. & WHITFIELD, P. J. (1975). Survival characteristics of the free-living cercarial population of the ectoparasitic digenean Transversotrema patialensis (Soparker, 1924). Parasitology 70, 295310.CrossRefGoogle Scholar
BUCHMANN, K. & BRESCIANI, J. (1997). Parasitic infections in pond-reared rainbow trout Oncorhynchus mykiss in Denmark. Diseases of Aquatic Organisms 28, 125138.CrossRefGoogle Scholar
CHAPPELL, L. H., HARDIE, L. J. & SECOMBES, C. J. (1994). Diplostomiasis: the disease and host–parasite interactions. In Parasitic Diseases of Fish (ed. Pike, A. W. & Lewis, J. W.), pp. 5986. Samara Publishing Limited, Dyfed.
CLUTTON-BROCK, T. H. (1988). Reproductive Success. Studies of Individual Variation in Contrasting Breeding Systems. The University of Chicago Press, Chicago.
DOBSON, A. P. & HUDSON, P. J. (1992). Regulation and stability of a free-living host-parasite system: Trichostrongylus tenuis in red grouse. II. Population models. Journal of Animal Ecology 61, 487498.Google Scholar
DOBSON, A. P., HUDSON, P. J. & LYLES, A. M. (1992). Macroparasites: worms and others. In Natural Enemies. The Population Biology of Predators, Parasites and Diseases (ed. Crawley, M. J.). Blackwell Scientific Publications, Oxford.CrossRef
DWYER, G., ELKINTON, J. S. & BUONACCORSI, J. P. (1997). Host heterogeneity in susceptibility and disease dynamics: tests of a mathematical model. American Naturalist 150, 685707.CrossRefGoogle Scholar
ERASMUS, D. A. (1958). Studies on the morphology, biology and development of a strigeid cercaria (Cercaria X Baylis 1930). Parasitology 48, 312335.CrossRefGoogle Scholar
EVANS, N. A. (1985). The influence of environmental temperature upon transmission of the cercariae of Echinostoma liei (Digenea: Echinostomatidae). Parasitology 90, 269275.CrossRefGoogle Scholar
FENTON, A. & HUDSON, P. J. (2002). Optimal infection strategies: should macroparasites hedge their bets? Oikos 96, 92101.Google Scholar
FOLSTAD, I., NILSSEN, A. C., HALVORSEN, O. & ANDERSEN, J. (1991). Parasite avoidance – the cause of post-calving migrations in reindeer. Canadian Journal of Zoology 69, 24232429.CrossRefGoogle Scholar
HAAS, W., STIEGELER, P., KEATING, A., KULLMANN, B., RABENAU, H., SCHÖNAMSGRUBER, E. & HABERL, B. (2002). Diplostomum spathaceum cercariae respond to a unique profile of cues during recognition of their fish host. International Journal for Parasitology 32, 11451154.CrossRefGoogle Scholar
HART, B. L. (1994). Behavioral defence against parasites – interaction with parasite invasiveness. Parasitology 109 (Suppl.), S139S151.Google Scholar
HART, B. L. (1997). Behavioural defence. In Host-Parasite Evolution: General Principles and Avian Models ( ed. Clayton, D. H. & Moore, J.), pp. 5977. Oxford University Press, Oxford.
HÖGLUND, J. (1995). Experiments on second intermediate fish host related cercarial transmission of the eyefluke (Diplostomum spathaceum) into rainbow trout (Oncorhynchus mykiss). Folia Parasitologica 42, 4953.Google Scholar
HUDSON, P. J., RIZZOLI, A., GRENFELL, B. T., HEESTERBEEK, H. & DOBSON, A. P. (2002). The Ecology of Wildlife Diseases. Oxford University Press, Oxford.
HUTCHINGS, M. R., KYRIAZAKIS, I., ANDERSON, D. H., GORDON, I. J. & COOP, R. L. (1998). Behavioural strategies used by parasitized and non-parasitized sheep to avoid ingestion of gastro-intestinal nematodes associated with faeces. Animal Science 67, 97106.CrossRefGoogle Scholar
KNELL, R. J., BEGON, M. & THOMPSON, D. J. (1996). Transmission dynamics of Bacillus thuringiensis infecting Plodia interpunctella: a test of the mass action assumption with an insect pathogen. Proceedings of the Royal Society of London, B 263, 7581.CrossRefGoogle Scholar
KNELL, R. J., BEGON, M. & THOMPSON, D. J. (1998). Transmission of Plodia interpunctella granulosis virus does not conform to the mass action model. Journal of Animal Ecology 67, 592599.CrossRefGoogle Scholar
LYHOLT, H. C. K. & BUCHMANN, K. (1996). Diplostomum spathaceum: effects of temperature and light on cercarial shedding and infection of rainbow trout. Diseases of Aquatic Organisms 25, 169173.CrossRefGoogle Scholar
McCALLUM, H. (2000). Population Parameters: Estimation for Ecological Models. Blackwell Science, Oxford.
McCALLUM, H., BARLOW, N. & HONE, J. (2001). How should pathogen transmission be modelled? Trends in Ecology and Evolution 16, 295300.Google Scholar
McCARTHY, A. M. (1999). The influence of temperature on the survival and infectivity of the cercariae of Echinoparyphium recurvatum (Digenea: Echinostomatidae). Parasitology 118, 383388.CrossRefGoogle Scholar
McKEOWN, C. A. & IRWIN, S. W. B. (1997). Accumulation of Diplostomum spp. (Digenea: Diplostomatidae) metacercariae in the eyes of 0+ and 1+ roach (Rutilus rutilus). International Journal for Parasitology 27, 377380.Google Scholar
PECHENIK, J. A. & FRIED, B. (1995). Effect of temperature on survival and infectivity of Echinostoma trivolis cercariae: a test of the energy limitation hypothesis. Parasitology 111, 373378.CrossRefGoogle Scholar
SMYTH, J. D. & HALTON, D. W. (1983). The Physiology of Trematodes. Cambridge University Press, Cambridge.
STABLES, J. N. & CHAPPELL, L. H. (1986). The epidemiology of diplostomiasis in farmed rainbow trout from Northeast Scotland. Parasitology 92, 699710.CrossRefGoogle Scholar
TIELENS, A. G. M. (1997). Biochemistry of Trematodes. In Advances in Trematode Biology (ed. Fried, B. & Graczyk, T. K.), pp. 309343. CRC Press, New York.
VALTONEN, E. T. & GIBSON, D. I. (1997). Aspects of the biology of diplostomid metacercarial (Digenea) populations occurring in fishes in different localities of northern Finland. Annales Zoologici Fennici 34, 4759.Google Scholar
WHYTE, S. K., SECOMBES, C. J. & CHAPPELL, L. H. (1991). Studies on the infectivity of Diplostomum spathaceum in rainbow trout (Oncorhynchus mykiss). Journal of Helminthology 65, 169178.CrossRefGoogle Scholar
WILLIAMS, G. C. (1966). Adaptation and Natural Selection. A Critique of Some Current Evolutionary Thought. Princeton University Press, Princeton.
WILSON, K., BJØRNSTAD, O. N., DOBSON, A. P., MERLER, S., POGLAYEN, G., RANDOLPH, S. E., READ, A. F. & SKORPING, A. (2002). Heterogeneities in Macroparasite Infections: Patterns and Processes. In Ecology of Wildlife Diseases (ed. Hudson, P. J., Rizzoli, A., Grenfell, B. T., Heesterbeek, H. & Dobson, A. P.), pp. 644. Oxford University Press, Oxford.