Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T10:31:26.186Z Has data issue: false hasContentIssue false

Toxoplasma gondii reorganizes the host cell architecture during spontaneous cyst formation in vitro

Published online by Cambridge University Press:  28 November 2017

T. C. Paredes-Santos
Affiliation:
Laboratório de Ultraestrutura Celular Hertha Meyer, Universidade Federal do Rio de Janeiro – Instituto de Biofísica Carlos Chagas Filho, Rio de Janeiro, Brazil Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Rio de Janeiro, Brazil
E. S. Martins-Duarte
Affiliation:
Laboratório de Ultraestrutura Celular Hertha Meyer, Universidade Federal do Rio de Janeiro – Instituto de Biofísica Carlos Chagas Filho, Rio de Janeiro, Brazil Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Rio de Janeiro, Brazil
W. de Souza
Affiliation:
Laboratório de Ultraestrutura Celular Hertha Meyer, Universidade Federal do Rio de Janeiro – Instituto de Biofísica Carlos Chagas Filho, Rio de Janeiro, Brazil Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Rio de Janeiro, Brazil
M. Attias
Affiliation:
Laboratório de Ultraestrutura Celular Hertha Meyer, Universidade Federal do Rio de Janeiro – Instituto de Biofísica Carlos Chagas Filho, Rio de Janeiro, Brazil Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Rio de Janeiro, Brazil
R. C. Vommaro*
Affiliation:
Laboratório de Ultraestrutura Celular Hertha Meyer, Universidade Federal do Rio de Janeiro – Instituto de Biofísica Carlos Chagas Filho, Rio de Janeiro, Brazil Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Rio de Janeiro, Brazil
*
Author for correspondence: R. C. Vommaro, E-mail: vommaro@biof.ufrj.br

Abstract

Toxoplasma gondii is an intracellular protozoan parasite that causes toxoplasmosis, a prevalent infection related to abortion, ocular diseases and encephalitis in immuno-compromised individuals. In the untreatable (and life-long) chronic stage of toxoplasmosis, parasitophorous vacuoles (PVs, containing T. gondii tachyzoites) transform into tissue cysts, containing slow-dividing bradyzoite forms. While acute-stage infection with tachyzoites involves global rearrangement of the host cell cytoplasm, focused on favouring tachyzoite replication, the cytoplasmic architecture of cells infected with cysts had not been described. Here, we characterized (by fluorescence and electron microscopy) the redistribution of host cell structures around T. gondii cysts, using a T. gondii strain (EGS) with high rates of spontaneous cystogenesis in vitro. Microtubules and intermediate filaments (but not actin microfilaments) formed a ‘cage’ around the cyst, and treatment with taxol (to inhibit microtubule dynamics) favoured cystogenesis. Mitochondria, which appeared adhered to the PV membrane, were less closely associated with the cyst wall. Endoplasmic reticulum (ER) profiles were intimately associated with folds in the cyst wall membrane. However, the Golgi complex was not preferentially localized relative to the cyst, and treatment with tunicamycin or brefeldin A (to disrupt Golgi or ER function, respectively) had no significant effect on cystogenesis. Lysosomes accumulated around cysts, while early and late endosomes were more evenly distributed in the cytoplasm. The endocytosis tracer HRP (but not BSA or transferrin) reached bradyzoites after uptake by infected host cells. These results suggest that T. gondii cysts reorganize the host cell cytoplasm, which may fulfil specific requirements of the chronic stage of infection.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrade, EF, Stumbo, AC, Monteiro-Leal, LH, Carvalho, L and Barbosa, HS (2001) Do microtubules around the Toxoplasma gondii-containing parasitophorous vacuole in skeletal muscle cells form a barrier for the phagolysosomal fusion? Journal of Submicroscopic Cytology and Pathology 33(3), 337341.Google Scholar
Bereiter-Hahn, J and Vöth, M (1994) Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria. Microscopy Research and Technique 27(3), 198219.CrossRefGoogle ScholarPubMed
Blader, IJ, Coleman, BI, Chen, C-T and Gubbels, M-J (2015) Lytic cycle of Toxoplasma gondii: 15 years later. Annual Review of Microbiology 69(1), 150902154308007.CrossRefGoogle ScholarPubMed
Cardoso, R, Soares, H, Hemphill, A and Leitão, A (2016) Apicomplexans pulling the strings: manipulation of the host cell cytoskeleton dynamics. Parasitology 114.Google ScholarPubMed
Celli, J and Tsolis, RM (2015) Bacteria, the endoplasmic reticulum and the unfolded protein response: friends or foes? Nature Reviews. Microbiology 13(2), 7182.CrossRefGoogle ScholarPubMed
Colonne, PM, Winchell, CG and Voth, DE (2016) Hijacking host cell highways: manipulation of the host actin cytoskeleton by obligate intracellular bacterial pathogens. Frontiers in Cellular and Infection Microbiology 6, 107.CrossRefGoogle ScholarPubMed
Coppens, I (2014) Exploitation of auxotrophies and metabolic defects in Toxoplasma as therapeutic approaches. International Journal for Parasitology 44(2), 109120.CrossRefGoogle ScholarPubMed
Coppens, I, Dunn, JD, Romano, JD, Pypaert, M, Zhang, H, Boothroyd, JC and Joiner, KA (2006) Toxoplasma gondii sequesters lysosomes from mammalian hosts in the vacuolar space. Cell 125(2), 261274.CrossRefGoogle ScholarPubMed
de Souza, W and Attias, M (2015) New views of the Toxoplasma gondii parasitophorous vacuole as revealed by Helium Ion Microscopy (HIM). Journal of Structural Biology 191(1), 7685.CrossRefGoogle ScholarPubMed
Dou, Z, Mcgovern, OL, Di Cristina, M, Cristina, D and Carruthers, B (2014) Toxoplasma gondii ingests and digests host cytosolic proteins. MBio 5(4), e01188-14.CrossRefGoogle ScholarPubMed
Dubey, JP, Lindsay, DS and Speer, CA (1998) Structures of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts. Clinical Microbiology Reviews 11(2), 267299.CrossRefGoogle ScholarPubMed
Dzierszinski, F, Nishi, M, Ouko, L and Roos, DS (2004) Dynamics of Toxoplasma gondii differentiation. Eukaryotic Cell 3(4), 9921003.CrossRefGoogle ScholarPubMed
Ferguson, DJ and Hutchison, WM (1987) An ultrastructural study of the early development and tissue cyst formation of Toxoplasma gondii in the brains of mice. Parasitology Research 73(6), 483491.CrossRefGoogle ScholarPubMed
Ferreira, ADM, Vitor, RWA, Gazzinelli, RT and Melo, MN (2006) Genetic analysis of natural recombinant Brazilian Toxoplasma gondii strains by multilocus PCR-RFLP. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases 6(1), 2231.CrossRefGoogle ScholarPubMed
Freyre, A (1995) Separation of toxoplasma cysts from brain tissue and liberation of viable bradyzoites. The Journal of Parasitology 81(6), 10081010.CrossRefGoogle ScholarPubMed
Gold, DA, Kaplan, AD, Lis, A, Bett, GCL, Rosowski, EE, Cirelli, KM, Hakimi, M, Rasmusson, RL and Saeij, JPJ (2015) The toxoplasma dense granule proteins GRA17 and GRA23 mediate the movement of small molecules between the host and the parasitophorous vacuole. Cell Host & Microbe 17(5), 642652.CrossRefGoogle ScholarPubMed
Guimarães, EV, Acquarone, M, de Carvalho, L and Barbosa, HS (2007) Anionic sites on Toxoplasma gondii tissue cyst wall: expression, uptake and characterization. Micron (Oxford, England: 1993) 38(6), 651658.CrossRefGoogle ScholarPubMed
Halonen, SK and Weidner, E (1994) Overcoating of Toxoplasma parasitophorous vacuoles with host cell vimentin type intermediate filaments. The Journal of Eukaryotic Microbiology 41(1), 6571.CrossRefGoogle ScholarPubMed
Halonen, SK, Weiss, LM and Chiu, FC (1998) Association of host cell intermediate filaments with Toxoplasma gondii cysts in murine astrocytes in vitro. International Journal for Parasitology 28(5), 815823.CrossRefGoogle ScholarPubMed
Ihara, F and Nishikawa, Y (2014) Starvation of low-density lipoprotein-derived cholesterol induces bradyzoite conversion in Toxoplasma gondii. Parasites & Vectors 7(1), 248.CrossRefGoogle ScholarPubMed
Jimenez, A, Chen, D and Alto, NM (2016) How bacteria subvert animal cell structure and function. Annual Review of Cell and Developmental Biology 32(1), annurev-cellbio-100814-125227.CrossRefGoogle ScholarPubMed
Kremer, JR, Mastronarde, DN, McIntosh, JR (1995) Computer visualization of three-dimensional image data using IMOD. Journal of structural biology 116, 7176.CrossRefGoogle Scholar
Lemgruber, L, Lupetti, P, Martins-Duarte, ES, De Souza, W and Vommaro, RC (2011) The organization of the wall filaments and characterization of the matrix structures of Toxoplasma gondii cyst form. Cellular Microbiology 13(12), 19201932.CrossRefGoogle ScholarPubMed
Magno, RC, Straker, LC, de Souza, W and Attias, M (2005) Interrelations between the parasitophorous vacuole of Toxoplasma gondii and host cell organelles. Microscopy and Microanalysis 11(2), 166174.CrossRefGoogle ScholarPubMed
McPhillie, M, Zhou, Y, El Bissati, K, Dubey, J, Lorenzi, H, Capper, M, Lukens, AK, Hickman, M, Muench, S, Verma, SK, Weber, CR, Wheeler, K, Gordon, J, Sanders, J, Moulton, H, Wang, K, Kim, T-K, He, Y, Santos, T, Woods, S, Lee, P, Donkin, D, Kim, E, Fraczek, L, Lykins, J, Esaa, F, Alibana-Clouser, F, Dovgin, S, Weiss, L, Brasseur, G, Wirth, D, Kent, M, Hood, L, Meunieur, B, Roberts, CW, Hasnain, SS, Antonyuk, SV, Fishwick, C and McLeod, R (2016) New paradigms for understanding and step changes in treating active and chronic, persistent apicomplexan infections. Scientific Reports 6, 29179.CrossRefGoogle ScholarPubMed
Melo, EJ, Carvalho, TM and De Souza, W (2001) Behaviour of microtubules in cells infected with Toxoplasma gondii. Biocell 25(1), 5359.Google ScholarPubMed
Montoya, JG and Liesenfeld, O (2004) Toxoplasmosis. Lancet 363(9425), 19651976.CrossRefGoogle ScholarPubMed
Moradin, N and Descoteaux, A (2012) Leishmania promastigotes: building a safe niche within macrophages. Frontiers in Cellular and Infection Microbiology 2, 121.CrossRefGoogle Scholar
Narasimhan, J, Joyce, BR, Naguleswaran, A, Smith, AT, Livingston, MR, Dixon, SE, Coppens, I, Wek, RC and Sullivan, WJ (2008) Translation regulation by eukaryotic initiation factor-2 kinases in the development of latent cysts in Toxoplasma gondii. Journal of Biological Chemistry 283(24), 1659116601.CrossRefGoogle ScholarPubMed
Paredes-Santos, TC, Martins-Duarte, ES, Vitor, RWA, de Souza, W, Attias, M and Vommaro, RC (2013) Spontaneous cystogenesis in vitro of a Brazilian strain of Toxoplasma gondii. Parasitology International 62(2), 181188.CrossRefGoogle ScholarPubMed
Paredes-Santos, TC, Tomita, T, Yan Fen, M, de Souza, W, Attias, M, Vommaro, RC and Weiss, LM (2016) Development of dual fluorescent stage specific reporter strain of Toxoplasma gondii to follow tachyzoite and bradyzoite development in vitro and in vivo. Microbes and Infection 18(1), 3947.CrossRefGoogle ScholarPubMed
Pernas, L and Boothroyd, JC (2010) Association of host mitochondria with the parasitophorous vacuole during Toxoplasma infection is not dependent on rhoptry proteins ROP2/8. International Journal for Parasitology 40(12), 13671371.CrossRefGoogle Scholar
Pernas, L, Adomako-Ankomah, Y, Shastri, AJ, Ewald, SE, Treeck, M, Boyle, JP and Boothroyd, JC (2014) Toxoplasma effector MAF1 mediates recruitment of host mitochondria and impacts the host response. PLoS Biology 12(4), e1001845.CrossRefGoogle ScholarPubMed
Popiel, I, Gold, MC and Booth, KS (1996) Quantification of Toxoplasma gondii bradyzoites. The Journal of Parasitology 82(2), 330332.CrossRefGoogle ScholarPubMed
Romano, JD and Coppens, I (2013) Host Organelle Hijackers: a similar modus operandi for Toxoplasma gondii and Chlamydia trachomatis: co-infection model as a tool to investigate pathogenesis. Pathogens and Disease 69(2), 7286.CrossRefGoogle ScholarPubMed
Romano, JD, Sonda, S, Bergbower, E, Smith, ME and Coppens, I (2013) Toxoplasma gondii salvages sphingolipids from the host Golgi through the rerouting of selected Rab vesicles to the parasitophorous vacuole. Molecular Biology of the Cell 24(12), 19741995.CrossRefGoogle Scholar
Schwab, JC, Beckers, CJ and Joiner, KA (1994) The parasitophorous vacuole membrane surrounding intracellular Toxoplasma gondii functions as a molecular sieve. Proceedings of the National Academy of Sciences of the United States of America 91(2), 509513.CrossRefGoogle ScholarPubMed
Sheffield, HG and Melton, ML (1968) The fine structure and reproduction of Toxoplasma gondii. The Journal of Parasitology 54(2), 209226.CrossRefGoogle ScholarPubMed
Sinai, AP, Webster, P and Joiner, KA (1997) Association of host cell endoplasmic reticulum and mitochondria with the Toxoplasma gondii parasitophorous vacuole membrane: a high affinity interaction. Journal of Cell Science 110(Pt 1), 21172128.CrossRefGoogle ScholarPubMed
Sullivan, WJ and Jeffers, V (2012) Mechanisms of Toxoplasma gondii persistence and latency. FEMS Microbiology Reviews 36(3), 717733.CrossRefGoogle ScholarPubMed
Suzuki, Y, Orellana, MA, Schreiber, RD and Remington, JS (1988) Interferon-gamma: the major mediator of resistance against Toxoplasma gondii. Science (New York, N.Y.) 240(4851), 516518.CrossRefGoogle ScholarPubMed
Sweeney, KR, Morrissette, NS, LaChapelle, S and Blader, IJ (2010) Host cell invasion by Toxoplasma gondii is temporally regulated by the host microtubule cytoskeleton. Eukaryotic Cell 9(11), 16801689.CrossRefGoogle ScholarPubMed
Tomita, T, Bzik, DJ, Ma, YF, Fox, BA, Markillie, LM, Taylor, RC, Kim, K and Weiss, LM (2013) The Toxoplasma gondii cyst wall protein CST1 is critical for cyst wall integrity and promotes bradyzoite persistence. PLoS Pathogens 9(12), e1003823.CrossRefGoogle ScholarPubMed
Truchan, HK, Cockburn, CL, Hebert, KS, Magunda, F, Noh, SM and Carlyon, JA (2016) The pathogen-occupied vacuoles of anaplasma phagocytophilum and anaplasma marginale interact with the endoplasmic reticulum. Frontiers in Cellular and Infection Microbiology 6, 22.CrossRefGoogle ScholarPubMed
Vieira, P, Vidigal, T, Vítor, D, Santos, V, Castro, FC and César, J (2002) Prenatal toxoplasmosis diagnosis from amniotic fluid by PCR. Revista Da Sociedade Brasileira de Medicina Tropical 35(1), 16.Google Scholar
Walker, ME, Hjort, EE, Smith, SS, Tripathi, A, Hornick, JE, Hinchcliffe, EH, Archer, W and Hager, KM (2008) Toxoplasma gondii actively remodels the microtubule network in host cells. Microbes and Infection 10(14–15), 14401449.CrossRefGoogle ScholarPubMed
Wang, Y, Weiss, LM and Orlofsky, A (2010) Coordinate control of host centrosome position, organelle distribution, and migratory response by Toxoplasma gondii via host mTORC2. Journal of Biological Chemistry 285(20), 1561115618.CrossRefGoogle ScholarPubMed
Watts, E, Zhao, Y, Dhara, A, Eller, B, Patwardhan, A & Sinai, P (2015) Novel approaches reveal that Toxoplasma gondii bradyzoites within tissue cysts are dynamic and replicating entities in vivo. MBio 6(5), 124.CrossRefGoogle ScholarPubMed
Weiss, LM and Kim, K (2000) The development and biology of bradyzoites of Toxoplasma gondii. Frontiers in Bioscience: A Journal and Virtual Library 5, D391D405.CrossRefGoogle ScholarPubMed
White, MW, Radke, JR and Radke, JB (2014) Microreview Toxoplasma development – turn the switch on or off? Cellular Microbiology 16, 466472.CrossRefGoogle ScholarPubMed
Zhang, YW, Halonen, SK, Ma, Y, Wittner, M, Weiss, LM and Mmun, INI (2001) Initial characterization of CST1, a Toxoplasma gondii cyst wall glycoprotein. Infection and Immunity 69(1), 501507.CrossRefGoogle ScholarPubMed
Supplementary material: Image

Paredes-Santos et al supplementary material 1

Supplementary Figure

Download Paredes-Santos et al supplementary material 1(Image)
Image 2.3 MB

Paredes-Santos et al supplementary material 2

Supplementary Video

Download Paredes-Santos et al supplementary material 2(Video)
Video 2.6 MB

Paredes-Santos et al supplementary material 3

Supplementary Video

Download Paredes-Santos et al supplementary material 3(Video)
Video 185.3 KB