Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T23:32:26.687Z Has data issue: false hasContentIssue false

Spread of parasites in metapopulations: an experimental study of the effects of host migration rate and local host population size

Published online by Cambridge University Press:  21 October 2004

J. E. LOPEZ
Affiliation:
Biology Department, Indiana University, 1001 East 3rd Street, Bloomington, IN 47405, USA Current address: Biology Department, Grand Valley State University, 1 Campus Drive, Allendale, MI 49401, USA.
L. P. GALLINOT
Affiliation:
Biology Department, Indiana University, 1001 East 3rd Street, Bloomington, IN 47405, USA
M. J. WADE
Affiliation:
Biology Department, Indiana University, 1001 East 3rd Street, Bloomington, IN 47405, USA

Abstract

We established experimental metapopulations of the flour beetle, Tribolium castaneum, and its ectoparasitic mite, Acarophenax tribolii, to investigate the effects of host migration rate and local host population size on the spread of mite infections. Global prevalence across our metapopulations was less than half the observed within-patch prevalence, so that spatial structure alone afforded a great deal of protection to hosts against parasite infection. Our results showed further that migration played a determining role in occupancy, the number of patches infected within a metapopulation, while host population size played a determining role in local prevalence, the fraction of hosts infected within local patches. Local and global prevalence appeared to reach equilibrium levels on 2 different time-scales. Local host prevalence reached equilibrium values within 30 days of receiving an infected host migrant. Global prevalence increased more slowly and was clearly dependent upon occupancy, the number of host patches with at least 1 infected host, which in turn depended on the level of host migration among host patches. The effect of population size was not limited to local prevalence in patches without spatial structure but extended to sets of patches across the metapopulation. Lloyd's index of patchiness differed significantly between metapopulations with small versus large numbers of hosts. Although parasites were aggregated on hosts for both local patch sizes, they tended to aggregate to a much greater degree at the smaller host patch size. We discuss our empirical findings in light of current epidemiological theory.

Type
Research Article
Copyright
2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

ANDERSON, R. M. & MAY, R. M. ( 1978). Regulation and stability of host-parasite population interactions I. regulatory processes. Journal of Animal Ecology 47, 219247.Google Scholar
ANDERSON, R. M. & MAY, R. M. ( 1979). Population biology of infectious diseases: Part I. Nature, London 280, 361367.CrossRefGoogle Scholar
ANDERSON, R. M. & MAY, R. M. ( 1981). The population dynamics of microparasites and their invertebrate hosts. Philosophical Transactions of the Royal Society of London, Series B 291, 451524.CrossRefGoogle Scholar
ANDERSON, R. M. & MAY, R. M. ( 1991). Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford.
BASCOMPTE, J. & SOLÉ, R. ( 1995). Rethinking complexity: modeling spatiotemporal dynamics in ecology. Trends in Ecology and Evolution 10, 361366.CrossRefGoogle Scholar
BOLKER, B. M. & GRENFELL, B. ( 1993). Chaos and biological complexity in measles dynamics. Proceedings of the Royal Society of London, Series B 251, 7581.CrossRefGoogle Scholar
BURDON, J. J., ERICSON, L. & MULLER, W. J. ( 1995). Temporal and spatial changes in a metapopulation of the rust pathogen Triphragmium ulmariae and its host, Filipendula ulmaria. Journal of Ecology 83, 979989.CrossRefGoogle Scholar
DE JONG, M., DIEKMANN, O. & HEESTERBEEK, H. ( 1995). How does transmission of infection depend on population size? In Epidemic Models: Their Structure and Relation to Data (ed. Mollison, D.), pp. 8494. Cambridge University Press, Cambridge.
DOBSON, A. P., HUDSON, P. J. & LYLES, A. M. ( 1992). Macroparasites: worms and others. In Natural Enemies: The Population Biology of Predators, Parasites and Diseases (ed. Crawley, M. J.), pp. 329348. Blackwell Scientific Publications, Oxford.CrossRef
DWYER, G. ( 1991). The roles of density, stage, and patchiness in the transmission of an insect virus. Ecology 72, 559574.CrossRefGoogle Scholar
EARN, D. J. D., ROHANI, P. & GRENFELL, B. ( 1998). Persistence, chaos and synchrony in ecology and epidemiology. Proceedings of the Royal Society of London, Series B 265, 710.CrossRefGoogle Scholar
ERICSON, L., BURDON, J. J. & MULLER, W. J. ( 1999). Spatial and temporal dynamics of epidemics of the rust fungus Uromyces valerianae on populations of its host Valeriana salina. Journal of Ecology 87, 649658.CrossRefGoogle Scholar
FERGUSON, N. M., MAY, R. M. & ANDERSON, R. M. ( 1997). Measles: persistence and synchronicity in disease dynamics. In Spatial Ecology: the Role of Space in Population Dynamics and Interspecific Interactions (ed. Tilman, D. & Kareiva, P.), pp. 137157. Princeton University Press, Princeton, New Jersey.
GOTELLI, N. J. ( 1991). Metapopulation models: The rescue effect, the propagule rain, and the core-satellite hypothesis. American Naturalist 138, 768776.CrossRefGoogle Scholar
GOTELLI, N. J. & KELLEY, W. G. ( 1993). A general model of metapopulation dynamics. Oikos 68, 3644.CrossRefGoogle Scholar
GRENFELL, B., BOLKER, B. M. & KLECZKOWSKI, A. ( 1995). Seasonality and extinction in chaotic metapopulations. Proceedings of the Royal Society of London, Series B 259, 97103.CrossRefGoogle Scholar
GRENFELL, B. & HARWOOD, J. ( 1997). (Meta)population dynamics of infectious diseases. Trends in Ecology and Evolution 12, 395399.CrossRefGoogle Scholar
GROSHOLZ, E. D. ( 1993). The influence of habitat heterogeneity on host–pathogen population dynamics. Oecologia 96, 347353.CrossRefGoogle Scholar
HANSKI, I. ( 1991). Single-species metapopulation dynamics: concepts, models and observations. Biological Journal of the Linnean Society 42, 1738.CrossRefGoogle Scholar
HANSKI, I. ( 1994). Patch-occupancy dynamics in fragmented landscapes. Trends in Ecology and Evolution 9, 131135.CrossRefGoogle Scholar
HANSKI, I. & GILPIN, M. ( 1991). Metapopulation dynamics: brief history and conceptual domain. Biological Journal of the Linnean Society 42, 316.CrossRefGoogle Scholar
HASSELL, M. P., COMINS, H. N. & MAY, R. M. ( 1991). Spatial structure and chaos in insect population dynamics. Nature, London 353, 255258.CrossRefGoogle Scholar
HASTINGS, A. ( 1990). Spatial heterogeneity and ecological models. Ecology 71, 426428.CrossRefGoogle Scholar
HESS, G. ( 1996). Disease in metapopulation models: implications for conservation. Ecology 77, 16171632.CrossRefGoogle Scholar
HOLMES, E. E. ( 1997). Basic epidemiological concepts in a spatial context. In Spatial Ecology: the Role of Space in Population Dynamics and Interspecific Interactions (ed. Tilman, D. & Kareiva, P.), pp. 111136. Princeton University Press, Princeton, New Jersey.
HOLT, R. D. & PICKERING, J. ( 1985). Infectious disease and species coexistence: A model of Lotka-Volterra form. American Naturalist 126, 196211.CrossRefGoogle Scholar
JENNERSTEN, O., NILSSON, S. G. & WASTLJUNG, U. ( 1983). Local plant populations as ecological islands: the infection of Viscaria vulgaris by the fungus Ustilago violacea. Oikos 41, 391395.CrossRefGoogle Scholar
LITTELL, R. C., MILLIKEN, G. A., STROUP, W. W. & WOLFINGER, R. D. ( 1996). SAS System for Mixed Models, SAS Institute, Inc., Cary, N.C.
LLOYD, A. L. & MAY, R. M. ( 1996). Spatial heterogeneity in epidemic models. Journal of Theoretical Biology 179, 111.CrossRefGoogle Scholar
LLOYD, M. ( 1967). Mean crowding. Journal of Animal Ecology 36, 130.CrossRefGoogle Scholar
LOPEZ, J. E. ( 2004). Parasite prevalence and the size of hot populations: an experimental test. Journal of Parasitology (in the Press).Google Scholar
MARGOLIS, L., ESCH, G. W., HOLMES, J. C., KURIS, A. M. & SCHAD, G. A. ( 1982). The use of ecological terms in parasitology (report of an ad hoc committee of the American Society of Parasitologists). Journal of Parasitology 68, 131133.CrossRefGoogle Scholar
MARON, J. L., HARRISON, S. & GREAVES, M. ( 2001). Origin of an insect outbreak: escape in space or time from natural enemies? Oecologia 126, 595602.Google Scholar
MAY, R. M. & ANDERSON, R. M. ( 1978). Regulation and stability of host-parasite population interactions. II. Destabilizing processes. Journal of Animal Ecology 47, 249267.Google Scholar
MAY, R. M. & ANDERSON, R. M. ( 1979). Population biology of infectious diseases: Part II. Nature, London 280, 455461.CrossRefGoogle Scholar
McCALLUM, H., BARLOW, N. & HONE, J. ( 2001). How should pathogen transmission be modeled? Trends in Ecology and Evolution 16, 295300.Google Scholar
MURDOCH, W. W. ( 1996). Refuge dynamics and metapopulation dynamics: an experimental test. American Naturalist 147, 424444.CrossRefGoogle Scholar
NETER, J., WASSERMAN, W. & KUTNER, M. H. ( 1990). Applied Linear Statistical Models, Irwin Inc., Homewood, IL, USA.
POST, W. M., DeANGELIS, D. L. & TRAVIS, C. C. ( 1983). Endemic disease in environments with spatially heterogeneous host populations. Mathematical Biosciences 63, 289302.CrossRefGoogle Scholar
SATTENSPIEL, L. & DIETZ, K. ( 1995). A structured epidemic model incorporating geographic mobility among regions. Mathematical Biosciences 128, 7191.CrossRefGoogle Scholar
SCOTT, M. E. ( 1987). Temporal changes in aggregation: a laboratory study. Parasitology 94, 583595.CrossRefGoogle Scholar
SMITH, D. L., ERICSON, L. & BURDON, J. J. ( 2003). Epidemiological patterns at multiple spatial scales: an 11-year study of a Triphragmium ulmariae-Filipendula ulmaria metapopulation. Journal of Ecology 91, 890903.CrossRefGoogle Scholar
THRALL, P. H. & BURDON, J. J. ( 1997). Host-pathogen dynamics in a metapopulation context: the ecological and evolutionary consequences of being spatial. Journal of Ecology 85, 743753.CrossRefGoogle Scholar
WADE, M. J. ( 1982). Group selection: migration and the differentiation of small populations. Evolution 36, 949961.CrossRefGoogle Scholar
WILSON, K. & GRENFELL, B. ( 1997). Generalized linear modelling for parasitologists. Parasitology Today 13, 3338.CrossRefGoogle Scholar
WILSON, K., GRENFELL, B. & SHAW, D. J. ( 1996). Analysis of aggregated parasite distributions: a comparison of methods. Functional Ecology 10, 592601.CrossRefGoogle Scholar
ZAR, J. H. ( 1994). Biostatistical Analysis, Prentice Hall, New Jersey.