Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T10:42:30.822Z Has data issue: false hasContentIssue false

Spatial and temporal structure of the trematode component community in Valvata macrostoma (Gastropoda, Prosobranchia)

Published online by Cambridge University Press:  10 November 2008

A. FALTÝNKOVÁ*
Affiliation:
Department of Biological and Environmental Science, University of Jyväskylä, PO Box 35 (YA), FI-40014 Jyväskylä, Finland Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic
E. T. VALTONEN
Affiliation:
Department of Biological and Environmental Science, University of Jyväskylä, PO Box 35 (YA), FI-40014 Jyväskylä, Finland
A. KARVONEN
Affiliation:
Department of Biological and Environmental Science, University of Jyväskylä, PO Box 35 (YA), FI-40014 Jyväskylä, Finland
*
*Corresponding author: Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic. Tel: +420 38 7775486. Fax: +420 385300388. E-mail: faltyn@paru.cas.cz

Summary

We conducted the first comprehensive study on the spatiotemporal structure of trematode communities in the large-mouthed valve snail, Valvata macrostoma. A total of 1103 snails were examined monthly between May and October 2007 from Lake Konnevesi, Central Finland, from a shallow (1–2 m deep) and an offshore site (5–6 m deep), located ca. 50–70 m apart. Snails were infected by 10 trematode species. The species composition and prevalence were strikingly different between the sites with high species diversity in the shallow site (all 10 species; total prevalence of sporocysts/rediae 12·1%, metacercariae 55·4%) compared to the deeper site (3 species; prevalence 15·0% and 1·9%, respectively). This difference persisted throughout our study and is probably related to the spatial distribution of bird definitive hosts, whereas the seasonal parasite dynamics are likely to be affected by changes in the age-structure of the snail population. The probability of sporocyst infections increased with snail size, but no such trend was observed in redial or metacercarial infections which decreased with host size. Our results show that generally well-described spatiotemporal differences in trematode infection of molluscs can emerge in very narrow spatial and temporal scales, which emphasizes the importance of these factors in community studies.

Type
Research Article
Copyright
Copyright © 2008 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Combes, C. (1980). Atlas Mondial des Cercaires. Mémoires du Muséum National d'Histoire Naturelle, Série A, Zoologie 115, 5235.Google Scholar
Curtis, L. A. (1997). Ilyanassa obsoleta (Gastropoda) as a host for trematodes in Delaware Estuaries. Journal of Parasitology 83, 793803.CrossRefGoogle ScholarPubMed
Curtis, L. A. and Hurd, L. E. (1983). Age, sex, and parasites: spatial heterogeneity in a sandflat population of Ilyanassa obsoleta. Ecology 64, 819828.CrossRefGoogle Scholar
Ducrot, V., Cognat, C., Mons, R., Mouthon, J. and Garric, J. (2006). Development of rearing and testing protocols for a new freshwater sediment test species: The gastropod Valvata piscinalis. Chemosphere 62, 12721281.CrossRefGoogle ScholarPubMed
Esch, G. W. and Fernández, J. (1993). A Functional Biology of Parasitism. Ecological and Evolutionary Implications. Chapman and Hall, London, UK.CrossRefGoogle Scholar
Esch, G. W. and Fernández, J. (1994). Snail trematode interactions and parasite community dynamics in aquatic systems: a review. American Midland Naturalist 131, 209237.CrossRefGoogle Scholar
Esch, G. W., Curtis, L. A. and Barger, M. A. (2001). A perspective on the ecology of trematode communities in snails. Parasitology 123 (Suppl.), S57S75.CrossRefGoogle ScholarPubMed
Esch, G. W., Barger, M. A. and Fellis, K. J. (2002). The transmission of digenetic trematodes: Style, elegance, complexity. Integrated and Comparative Biology 42, 304312.CrossRefGoogle ScholarPubMed
Evans, N. A. and Gordon, D. M. (1983). Experimental studies on the transmission dynamics of the cercariae of Echinoparyphium recurvatum (Digenea: Echinostomatidae). Parasitology 87, 167174.CrossRefGoogle Scholar
Faltýnková, A., Niewiadomska, K., Santos, M. J. and Valtonen, E. T. (2007). Furcocercous cercariae (Trematoda) from freshwater snails in Central Finland. Acta Parasitologica 52, 310317.CrossRefGoogle Scholar
Fernández, J. and Esch, G. W. (1991 a). Guild structure of larval trematodes in the snail Helisoma anceps: Patterns and processes at the individual host level. Journal of Parasitology 77, 528539.CrossRefGoogle ScholarPubMed
Fernández, J. and Esch, G. W. (1991 b). The component community structure of larval trematodes in the pulmonate snail Helisoma anceps. Journal of Parasitology 77, 540550.CrossRefGoogle ScholarPubMed
Fredensborg, B. L., Mouritsen, K. N. and Poulin, R. (2006). Relating bird host distribution and spatial heterogeneity in trematode infections in an intertidal snail – from small to large scale. Marine Biology 140, 275283.CrossRefGoogle Scholar
Fretter, V. and Graham, A. (1978). The prosobranch mollucs of Britain and Denmark Part 3: Neritacea, Viviparacea, Valvatacea, terrestrial and freshwater Littoracea and Rissoacea. Journal of Molluscan Studies 5 (Suppl.), S111S115.Google Scholar
Gérard, C. (1997). Importance du parasitisme dans la communauté de gastéropodes de l'étang de Combourg (Bretagne, France). Parasite 4, 4954.CrossRefGoogle Scholar
Gérard, C. (2001). Structure and temporal variation of trematode and gastropod communities in a freshwater ecosystem. Parasite 8, 275287.CrossRefGoogle Scholar
Gérard, C., Carpentier, A. and Paillisson, J. (2008). Long-term dynamics and community structure of freshwater gastropods exposed to parasitism and other environmental stressors. Freshwater Biology 53, 470484.CrossRefGoogle Scholar
Glöer, P. (2002). Die Süßwassergastropoden Nord- und Mitteleuropas. Bestimmungschlüssel, Lebensweise, Verbreitung. Die Tierwelt Deutschlands 73, 1327.Google Scholar
Grabda-Kazubska, B. and Kiseliene, V. (1991). The life cycle of Echinoparyphium mordwilkoi Skrjabin, 1915 (Trematoda, Echinostomatidae). Acta Parasitologica Polonica 36, 167173.Google Scholar
Granovitch, A. I., Sergievsky, S. O. and Sokolova, I. M. (2000). Spatial and temporal variation of trematode infection in coexisting populations of intertidal gastropods Littorina saxatilis and L. obtusata in the White Sea. Diseases of Aquatic Organisms 41, 5364.CrossRefGoogle ScholarPubMed
Hechinger, R. F. and Lafferty, K. D. (2005). Host diversity begets parasite diversity: bird final hosts and trematodes in snail intermediate hosts. Proceedings of the Royal Society of London, B 272, 10591066.Google ScholarPubMed
Jokela, J. and Lively, C. M. (1995). Spatial variation in infection by digenetic trematodes in a population of freshwater snails (Potamopyrgus antipodarum). Oecologia 103, 509517.CrossRefGoogle Scholar
Karvonen, A., Terho, P., Seppälä, O., Jokela, J. and Valtonen, E. T. (2006 a). Ecological divergence of closely related Diplostomum (Trematoda) parasites. Parasitology 133, 229235.CrossRefGoogle ScholarPubMed
Karvonen, A., Savolainen, M., Seppälä, O. and Valtonen, E. T. (2006 b). Dynamics of Diplostomum spathaceum infection in snail hosts. Parasitology Research 99, 341345.CrossRefGoogle ScholarPubMed
Kostadinova, A. (2005). Family Echinostomatidae. In Keys to the Trematoda (Vol. 2) (ed. Jones, A., Bray, R. A. and Gibson, D. I.), pp. 964. Natural History Museum, London and CAB International, Wallingford, UK.CrossRefGoogle Scholar
Kiseliene, V., Grabda-Kazubska, B. and Moné, H. (1997). On morphology and chaetotaxy of Cercaria abyssicola Wesenberg-Lund, 1934 (Digenea, Echinostomatidae). Acta Parasitologica 42, 711.Google Scholar
Kube, S., Kube, J. and Bick, A. (2002 a). Component community of larval trematodes in the mudsnail Hydrobia ventrosa: temporal variations in prevalence in relation to host life history. Journal of Parasitology 88, 730737.CrossRefGoogle ScholarPubMed
Kube, J., Kube, S. and Dierschke, V. (2002 b). Spatial and temporal variations in the trematode component community of the mudsnail Hydrobia ventrosa in relation to the occurrence of waterfowl as definitive hosts. Journal of Parasitology 88, 10751086.CrossRefGoogle Scholar
Kuris, A. M. (1991). Guild structure of larval trematodes in molluscan hosts: prevalence, dominance and significance of competition. In Parasite Communities: Patterns and Processes (ed. Esch, G. W., Bush, A. and Aho, J.), pp. 69100. Chapman and Hall, London.Google Scholar
Kuris, A. M. and Lafferty, K. (1994). Community structure: larval trematodes in snail hosts. Annual Review of Ecology and Systematics 25, 189217.CrossRefGoogle Scholar
Lafferty, K. D., Sammond, D. T. and Kuris, A. M. (1994). Analysis of larval trematode communities. Ecology 75, 22752285.CrossRefGoogle Scholar
Lim, H. K. and Heyneman, D. (1972). Intramolluscan inter-trematode antagonism: a review of factors influencing the host-parasite system and its possible role in biological control. Advances in Parasitology 10, 191268.CrossRefGoogle ScholarPubMed
McCarthy, A. M. (1990). Speciation of echinostomes – evidence for the existence of 2 sympatric sibling species in the complex Echinoparyphium recurvatum (von Linstow, 1873). Parasitology 101, 3542.CrossRefGoogle Scholar
McCarthy, A. M. (1999 a). Phototactic responses of the cercaria of Echinoparyphium recurvatum during phases of sub-maximal and maximal infectivity. Journal of Helminthology 73, 6365.CrossRefGoogle Scholar
McCarthy, A. M. (1999 b). The infuence of temperature on the survival and infectivity of the cercariae of Echinoparyphium recurvatum (Digenea: Echinostomatidae). Parasitology 118, 383388.CrossRefGoogle Scholar
McCurdy, D. G., Boates, S. and Forbes, M. R. (2000). Spatial distribution of the intertidal snail Ilyanassa obsoleta in relation to parasitism by two species of trematodes. Canadian Journal of Zoology 78, 11371143.CrossRefGoogle Scholar
Minchella, D. J. (1985). Host life-history variation in response to parasitism. Parasitology 90, 205216.CrossRefGoogle Scholar
Niewiadomska, K. (2002). Family Strigeidae Railliet, 1919. In Keys to the Trematoda (Vol. 1) (ed. Gibson, D. I., Jones, A. and Bray, R. A.), pp. 231241. Natural History Museum, London and CAB International, Wallingford, UK.CrossRefGoogle Scholar
Niewiadomska, K. (2003). Parasites of Fishes in Poland. Polskie Towarzystwo Parazitologiczne, Warsaw (in Polish).Google Scholar
Odening, K., Mattheis, T. and Bockhardt, I. (1970). Der Lebenszyklus von Cotylurus c. cucullus (Thoss) (Trematoda, Strigeida) im Raum Berlin. Zoologische Jahrbücher. Abteilung für Systematik 97, 125198.Google Scholar
Odening, K. and Bockhardt, I. (1971). Der Lebenszyklus des Trematoden Cotylurus variegatus im Spree-Havel-Seengebiet. Biologisches Zentralblatt 90, 4984.Google Scholar
Rohde, K. (1981). Population dynamics of two snail species, Planaxis sulcatus and Cerithium moniliferum, and their trematode species at Heron Island, Great Barrier Reef. Oecologia 49, 344352.CrossRefGoogle ScholarPubMed
Sapp, K. K. and Esch, G. W. (1994). The effects of spatial and temporal heterogeneity as structuring forces for parasite communities in Helisoma anceps and Physa gyrina. American Midland Naturalist 132, 91103.CrossRefGoogle Scholar
Skirnisson, K., Galaktionov, K. V. and Kozminsky, V. (2004). Factors influencing the distribution of digenetic trematode infections in a mudsnail (Hydrobia ventrosa) population inhabiting salt marsh ponds in Iceland. Journal of Parasitology 90, 5059.CrossRefGoogle Scholar
Smith, N. F. (2001). Spatial heterogeneity in recruitment of larval trematodes to snail intermediate hosts. Oecologia 127, 115122.CrossRefGoogle ScholarPubMed
Sorensen, R. E. and Minchella, D. J. (2001). Snail-trematode life history interactions: past trends and future directions. Parasitology 123 (Suppl.), S3S18.CrossRefGoogle ScholarPubMed
Sousa, W. P. (1991). Spatial scale and the processes structuring a guild of larval trematode parasites. In Parasite Communities: Patterns and Processes (ed. Esch, G. W., Bush, A. and Aho, J.), pp. 4167. Chapman and Hall, London, UK.Google Scholar
Sousa, W. P. (1993). Interspecific antagonism and species coexistence in a diverse guild of larval trematode parasites. Ecological Monographs 63, 103128.CrossRefGoogle Scholar
Swennen, C., Heessen, H. J. L. and Höcker, A. W. M. (1979). Occurrence and biology of the trematodes Cotylurus (Ichthyocotylurus) erraticus, C. (I.) variegatus and C. (I.) platycephalus (Digenea: Strigeidae) in the Netherlands. Netherlands Journal of Sea Research 13, 161191.CrossRefGoogle Scholar
Wesenberg-Lund, C. (1934). Contributions to the development of the Trematoda Digenea. Part II. The biology of the freshwater cercariae in Danish freshwaters. Mémoires de l'Academie Royale des Sciences et des Lettres de Danemark, Copenhague. Section des Sciences 9, 3223.Google Scholar
Wikgren, B. J. (1956). Studies on Finnish larval flukes with a list of known Finnish adult flukes (Trematoda: Malacocotylea). Acta Zoologica Fennica 91, 1106.Google Scholar
Wright, C. A. (1971). Flukes and Snails. George Allen and Unwin Ltd, London, UK.Google Scholar
Yamaguti, S. (1971). Synopsis of Digenetic Trematodes of Vertebrates (Vols 1 and 2). Keigaku Publishers, Tokyo.Google Scholar