Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T21:59:27.155Z Has data issue: false hasContentIssue false

A small ciliary surface glycoprotein of the monogenean parasite Neobenedenia girellae acts as an agglutination/immobilization antigen and induces an immune response in the Japanese flounder Paralichthys olivaceus

Published online by Cambridge University Press:  11 July 2005

A. HATANAKA
Affiliation:
Central Research Laboratories of Nippon Suisan Kaisha Ltd, 559-6 Kitano-Machi, Hachioji, Tokyo 192-0906, Japan
N. UMEDA
Affiliation:
Marine Biological Technology Center of Nippon Suisan Kaisha Ltd, 508-8 Ariakeura Tsurumi-Cho, Minamiamabegun, Oita 876-1204, Japan
S. YAMASHITA
Affiliation:
Central Research Laboratories of Nippon Suisan Kaisha Ltd, 559-6 Kitano-Machi, Hachioji, Tokyo 192-0906, Japan
N. HIRAZAWA
Affiliation:
Central Research Laboratories of Nippon Suisan Kaisha Ltd, 559-6 Kitano-Machi, Hachioji, Tokyo 192-0906, Japan

Abstract

The capsalid monogenean Neobenedenia girellae, a parasite of seawater fishes, was found to express an antigen that elicits antibodies in rabbits, and these antibodies had agglutination/immobilization activity against N. girellae larvae (oncomiracidia) in vitro. Indirect immunofluorescence staining of N. girellae oncomiracidia showed that this agglutination/immobilization antigen was expressed on the surface of cilia. An intraperitoneal injection of ciliary proteins (either sonicated or intact) with adjuvant also elicited agglutinizing/immobilizing antibodies in sera from Japanese flounder, Paralichthys olivaceus. These antisera showed a clear correlation between anti-ciliary antibody levels (measured by enzyme-linked immunosorbent assays) and their agglutination/immobilization activity. Anti-ciliary antibody levels in Japanese flounder reached a plateau at 39 days after booster immunization and were significantly higher in the two immunized groups (injection of sonicated or intact cilia) as compared with control fish (injection of bovine serum albumin; ANOVA, Tukey's test, P<0·01). Anti-ciliary antibodies were also found in fish mucus; however, there was no correlation between fish serum anti-ciliary antibody levels and mucus antibody levels. A Triton X-114-soluble 8 kDa glycoprotein of the ciliary integral membrane fraction is a plausible candidate for the agglutination/immobilization antigen based on SDS-polyacrylamide gel electrophoresis and immunoblot analyses with rabbit and fish antisera.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bondad-Reantaso, M. G., Ogawa, K., Fukudome, M. and Wakabayashi, H. ( 1995). Reproduction and growth of Neobenedenia girellae (Monogenea: Capsalidae), a skin parasite of cultured marine fishes of Japan. Fish Pathology 30, 227231.CrossRefGoogle Scholar
Border, C. ( 1981). Phase separation of integral membrane proteins in Triton X-114. Journal of Biological Chemistry 256, 16041607.Google Scholar
Bradford, M. A. ( 1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248.CrossRefGoogle Scholar
Bruns, P. J. ( 1971). Immobilization antigens of Tetrahymena pyriformis I. Assay and extraction. Experimental Cell Research 65, 445453.Google Scholar
Clark, T. G., Dickerson, H. W. and Findly, R. C. ( 1988). Immune response of channel catfish to ciliary antigens of Ichthyophthirius multifiliis. Developmental and Comparative Immunology 12, 581594.CrossRefGoogle Scholar
Dickerson, H. W., Clark, T. G. and Findly, R. C. ( 1989). Ichthyophthirius multifiliis has membrane-associated immobilization antigens. Journal of Protozoology 36, 159164.CrossRefGoogle Scholar
Diconza, J. J. and Halliday, W. J. ( 1971). Relationship of catfish serum antibodies to immunoglobulin in mucus secretions. The Australian Journal of Experimental Biology and Medical Science 49, 517519.Google Scholar
Doerder, F. P., Berkowitz, M. S. and Skalican-Crowe, J. ( 1985). Isolation and genetic analysis of mutations at the SerH immobilization antigen locus of Tetrahymena thermophila. Genetics 111, 273286.Google Scholar
Hansma, H. G. ( 1975). The immobilization antigen of Paramecium aurelia is a single polypeptide chain. Journal of Protozoology 22, 257259.CrossRefGoogle Scholar
Hargis, W. H. Jr. ( 1955). A few species of Benedenia (Trematoda: Monogenia) from Girella nigricans, opaleye. Journal of Parasitology 41, 4850.CrossRefGoogle Scholar
Hines, R. S. and Spira, D. T. ( 1974). Ichthyophthiriasis in the mirror carp Cyprinus carpio (L.) V. Acquired immunity. Journal of Fish Biology 6, 373378.Google Scholar
Hirazawa, N., Mitsuboshi, T., Hirata, T. and Shirasu, K. ( 2004). Susceptibility of spotted halibut Verasper variegatus (Pleuronectidae) to infection by monogenean Neobenedenia girellae (Capsalidae) and oral therapy trials using praziquantel. Aquaculture 238, 8395.CrossRefGoogle Scholar
Iglesias, R., Paramá, A., Áivarez, M. F., Leiro, J., Ubeira, F. M. and Sanmertín, M. L. ( 2002). Philasterides dicentrarchi (Ciliophora: Scuticociliatide) express surface immobilization antigens that probably induce protective immune responses in turbots. Parasitology 126, 125134.Google Scholar
Kobayashi, K. ( 1980). Rearing method of juvenile Japanese flounder Paralichthys olivaceus. Tottori Prefectural Fisheries Research Center Report 22, 139–151. (In Japanese.)
Jones, I. G. ( 1965). Immobilization antigen in heterozygous clones of Paramecium aurelia. Nature, London 207, 769.CrossRefGoogle Scholar
Laemmli, U. K. ( 1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227, 680.CrossRefGoogle Scholar
Leong, T. S. ( 1997). Control of parasites in cultured marine finfishes in Southeast Asia – an overview. International Journal for Parasitology 27, 11771184.Google Scholar
Maki, J. L. and Dickerson, H. W. ( 2003). Systematic and cutaneous mucus antibody responses of channel catfish immunized against the protozoan parasite Ichthyophthirius multifiliis. Clinical and Diagnostic Laboratory Immunology 10, 876881.Google Scholar
McLaren, D. J. ( 1992). Parasites, escape from immunity. In Encyclopedia of Immunology III (ed. Roitt, I. M. and Delves, P. J.), pp. 12071210. Academic Press, London.
Ogawa, K., Bondad-Reantaso, M. G., Fukudome, M. and Wakabayashi, H. ( 1995). Neobenedenia girellae (Hargis, 1955) Yamaguchi, 1963 (Monogenia: Capsalidae) from cultured marine fishes of Japan. Journal of Parasitology 81, 223227.CrossRefGoogle Scholar
Rombout, J. W., Block, L. J., Lamers, C. H. and Egberts, E. ( 1986). Immunization of carp (Cyprinus carpio) with a Vibrio anguillarum bacterin: indications for common mucosal immune system. Developmental and Comparative Immunology 10, 341351.CrossRefGoogle Scholar
Umeda, N. and Hirazawa, N. ( 2004). Response of Monogenean Neobenedenia girellae to low salinities. Fish Pathology 39, 105107.CrossRefGoogle Scholar
Wang, X. and Dickerson, H. W. ( 2002). Surface immobilization antigens of the parasitic ciliate Ichthyophthirius multifiliis elicits protective immunity in channel catfish (Ictalurus punctatus). Clinical and Diagnostic Laboratory Immunology 9, 176181.CrossRefGoogle Scholar
Xu, D. H. and Dickerson, H. W. ( 2002). Cutaneous antibodies in excised skin from channel catfish Ictalurus punctatus Rafinesque immune to Ichthyophthirius multifiliis. Journal of Fish Diseases 25, 4552.CrossRefGoogle Scholar
Yamaguchi, S. ( 1963). Systema Helminthum, Vol. IV. Monogenia and Apidocotylea. John Wiley and Sons, Interscience Publishers, New York.
Zacharius, R. M., Zell, T. E., Morrison, J. H. and Woodlock, J. J. ( 1969). Glycoprotein staining following electrophoresis on acrylamide gels. Analytical Biochemistry 30, 148152.CrossRefGoogle Scholar