Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T01:40:34.043Z Has data issue: false hasContentIssue false

Richness and distribution of tropical oyster parasites in two oceans

Published online by Cambridge University Press:  06 June 2016

KATRINA M. PAGENKOPP LOHAN*
Affiliation:
Marine Invasions Laboratory, Smithsonian Environmental Research Center, Edgewater, Maryland 21037, USA Center for Conservation and Evolutionary Genetics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 20008, USA
KRISTINA M. HILL-SPANIK
Affiliation:
Marine Invasions Laboratory, Smithsonian Environmental Research Center, Edgewater, Maryland 21037, USA Center for Conservation and Evolutionary Genetics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 20008, USA
MARK E. TORCHIN
Affiliation:
Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of Panama
LEOPOLDINA AGUIRRE-MACEDO
Affiliation:
Centre for Investigation and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN) Unidad Mérida, Carretera Antigua a Progreso Km 6, A.P. 73 Cordemex, C.P. 97310 Mérida, Yucatan, Mexico
ROBERT C. FLEISCHER
Affiliation:
Center for Conservation and Evolutionary Genetics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 20008, USA
GREGORY M. RUIZ
Affiliation:
Marine Invasions Laboratory, Smithsonian Environmental Research Center, Edgewater, Maryland 21037, USA
*
*Corresponding author: Marine Invasions Laboratory, Smithsonian Environmental Research Center, Edgewater, Maryland 21037, USA. E-mail: lohank@si.edu

Summary

Parasites can exert strong effects on population to ecosystem level processes, but data on parasites are limited for many global regions, especially tropical marine systems. Characterizing parasite diversity and distributions are the first steps towards understanding the potential impacts of parasites. The Panama Canal serves as an interesting location to examine tropical parasite diversity and distribution, as it is a conduit between two oceans and a hub for international trade. We examined metazoan and protistan parasites associated with ten oyster species collected from both Panamanian coasts, including the Panama Canal and Bocas del Toro. We found multiple metazoan taxa (pea crabs, Stylochus spp., Urastoma cyrinae). Our molecular screening for protistan parasites detected four species of Perkinsus (Perkinsus marinus, Perkinsus chesapeaki, Perkinsus olseni, Perkinsus beihaiensis) and several haplosporidians, including two genera (Minchinia, Haplosporidium). Species richness was higher for the protistan parasites than for the metazoans, with haplosporidian richness being higher than Perkinsus richness. Perkinsus species were the most frequently detected and most geographically widespread among parasite groups. Parasite richness and overlap differed between regions, locations and oyster hosts. These results have important implications for tropical parasite richness and the dispersal of parasites due to shipping associated with the Panama Canal.

Type
Research Article
Copyright
Copyright © 2016 Smithsonian Institution 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address: Grice Marine Lab, College of Charleston, Charleston, South Carolina 29412, USA.

References

Aguirre-Macedo, M. L., Simá-Álvarez, R. A., Román-Magan, M. K. and Güemez-Ricalde, J. I. (2007). Parasite survey of the eastern oyster Crassostrea virginica in coastal lagoons of the southern Gulf of Mexico. Journal of Aquatic Animal Health 19, 270279.Google Scholar
Arzul, I. and Carnegie, R. B. (2015). New perspective on the haplosporidian parasites of molluscs. Journal of Invertebrate Pathology 131, 3242. doi:10.1016/j.jip.2015.07.014 CrossRefGoogle ScholarPubMed
Burreson, E. M. (2008). Misuse of PCR assay for diagnosis of mollusc protistan infections. Diseases of Aquatic Organisms 80, 8183.CrossRefGoogle ScholarPubMed
Burreson, E. M. and Ford, S. E. (2004). A review of recent information on the Haplosporidia, with special reference to Haplosporidium nelsoni (MSX disease). Aquatic Living Resources 17, 499517.Google Scholar
Cáceres-Martínez, J., Vásquez-Yeomans, R. and Sluys, R. (1998). The turbellarian Urastoma cyprinae from edible mussels Mytilus galloprovincialis and Mytilus californianus in Baja California, NW México. Journal of Invertebrate Pathology 72, 214219.Google Scholar
Cáceres-Martínez, J., Ortega, M. G., Vásquez-Yeomans, R., García, T. J. P., Stokes, N. and Carnegie, R. B. (2012). Natural and cultured populations of the mangrove oyster Saccostrea palmula from Sinaloa, Mexico, infected by Perkinsus marinus . Journal of Invertebrate Pathology 110, 321325.CrossRefGoogle ScholarPubMed
Campos, E. (2002). Two new genera of pinnotherid crabs from the tropical eastern Pacific (Decapoda: Brachyura: Pinnotheridae). Journal of Crustacean Biology 22, 328336.Google Scholar
Canestri Trotti, G., Baccarani, E. M., Gianetto, S., Giuffrida, A. and Paesanti, F. (1998). Prevalence of Mytilicola intestinalis (Copepoda:Mytilicolidae) and Urastoma cyrinae (Turbellaria: Hypotrichinidae) in marketable mussels Mytilus galloprovincialis in Italy. Diseases of Aquatic Organisms 32, 145149.Google Scholar
Casas, S. M., Villalba, A. and Reece, K. S. (2002). Study of perkinsosis in the carpet shell clam Tapes decussatus in Galicia (NW Spain). I. Identification of the aetiological agent and in vitro modulation of zoosporulation by temperature and salinity. Diseases of Aquatic Organisms 50, 5165.Google Scholar
Coen, L. D., Brumbaugh, R. D., Bushek, D., Grizzle, R., Luckenbach, M. W., Posey, M. H., Powers, S. P. and Tolley, S. G. (2007). Ecosystem services related to oyster restoration. Marine Ecology Progress Series 341, 303307.CrossRefGoogle Scholar
da Silva, P. M., Scardua, M. P., Vianna, R. T., Mendonca, R. C., Vieira, C. B., Dungan, C. F., Scott, G. P. and Reece, K. S. (2014). Two Perkinsus spp. infect Crassostrea gasar oysters from cultured and wild populations of the Rio São Francisco estuary, Sergipe, northeastern Brazil. Journal of Invertebrate Pathology 119, 6271.Google Scholar
Dang, C., Dungan, C. F., Scott, G. P. and Reece, K. S. (2015). Perkinsus sp. infections and in vitro isolates from Anadara trapezia (mud arks) of Queensland, Australia. Diseases of Aquatic Organisms 113, 5158.Google Scholar
Darriba, D., Taboada, G. L., Doallo, R. and Posada, D. (2012). jModelTest2: more models, new heuristics and parallel computing. Nature Methods 9, 772. doi: 10.1038/nmeth.2109 Google Scholar
Fleming, L. C., Michael, D. B. B. and Bacon, G. B. (1981). On some commensal Turbellaria of the Canadian east coast. In The Biology of the Turbellaria (ed. Schockaert, E. R. and Ball, I. R.), pp. 131137. Springer, The Hague, The Netherlands.Google Scholar
Geller, J., Meyer, C., Parker, M. and Hawk, H. (2013). Redesign of PCR primers for mitochondrial cytochrome oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Molecular Ecology Resources 13, 851861.Google Scholar
Glynn, P. W. (1972). Observations on the ecology of the Caribbean and Pacific coasts of Panama. In The Panamic Biota: Some observations prior to a sea-level canal (ed. Jones, M. L.), pp. 1330. Bulletin of the Biological Society of Washington, Washington, DC.Google Scholar
Goggin, C. L. and Cannon, L. R. G. (1989). Occurrence of a turbellarian from Australian tridacnid clams. International Journal for Parasitology 19, 345346.Google Scholar
Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W. and Gascuel, O. (2010). New algorithms and methods to estimate Maximum-Likelihood phylogenies: assessing the performance of PhyML 3·0. Systematic Biology 59, 307321.CrossRefGoogle ScholarPubMed
Hartikainen, H., Ashford, O. S., Berney, C., Okamura, B., Feist, S. W., Baker-Austin, C., Stentiford, G. D. and Bass, D. (2014). Lineage-specific molecular probing reveals novel diversity and ecological partitioning of haplosporidians. The ISME Journal 8, 177186.Google Scholar
Holt, R. D., Dobson, A. P., Begon, M., Bowers, R. G. and Schauber, E. M. (2003). Parasite establishment in host communities. Ecology Letters 6, 837842.Google Scholar
Jones, M. L. (1972). The Panamic Biota: Some Observations Prior to a Sea-Level Canal. Bulletin of the Biological Society of Washington, Washington, DC.Google Scholar
Katoh, K. and Toh, H. (2008). Recent developments in the MAFFT multiple sequence alignment program. Briefings in Bioinformatics 9, 286298.Google Scholar
Katoh, K., Misawa, K., Kuma, K. and Miyata, T. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30, 30593066.CrossRefGoogle ScholarPubMed
Kemp, W. M., Boynton, W. R., Adolf, J. E., Boesch, D. F., Boicourt, W. C., Brush, G., Cornwell, J. C., Fisher, T. R., Glibert, P. M., Hagy, J. D., Harding, L. W., Houde, E. D., Kimmel, D. G., Miller, W. D., Newell, R. I. E., Roman, M. R., Smith, E. M. and Stevenson, J. C. (2005). Eutrophication of Chesapeake Bay: historical trends and ecological interactions. Marine Ecology Progress Series 303, 129.Google Scholar
Krasnov, B. R., Poulin, R., Shenbrot, G. I., Mouillot, D. and Khokhlova, I. S. (2005). Host specificity and geographic range in haematophagous ectoparasites. Oikos 108, 449456.Google Scholar
Krasnov, B. R., Shenbrot, G. I., Khokhlova, I. S., Mouillot, D. and Poulin, R. (2008). Latitudinal gradients in niche breadth: empirical evidence from haematophagous ectoparasites. Journal of Biogeography 35, 592601.CrossRefGoogle Scholar
Lessios, H. A. (2008). The great American schism: divergence of marine organisms after the rise of the Central American isthmus. Annual Review of Ecology, Evolution, and Systematics 39, 6391.Google Scholar
Lindenfors, P., Nunn, C. L., Jones, K. E., Cunningham, A. A., Sechrest, W. and Gittleman, J. L. (2007). Parasite species richness in carnivores: effects of host body mass, latitude, geographical range and population density. Global Ecology and Biogeography 16, 496509.CrossRefGoogle Scholar
Manning, R. B. (1993). Three genera removed from the synonymy of Pinnotheres Bosc. 1802 (Brachyura: Pinnotheridae). Proceedings of the Biological Society of Washington 106, 523523.Google Scholar
Marko, P. B. and Moran, A. L. (2009). Out of sight, out of mind: high cryptic diversity obscures the identities and histories of geminate species in the marine bivalve subgenus Acar . Journal of Biogeography 36, 18611880.CrossRefGoogle Scholar
Morand, S. (2015). (macro-) Evolutionary ecology of parasite diversity: from determinants of parasite species richness to host diversification. International Journal for Parasitology: Parasites and Wildlife 4, 8087.Google Scholar
Moss, J. A., Xiao, J., Dungan, C. F. and Reece, K. S. (2008). Description of Perkinsus beihaiensis n. sp., a new Perkinsus sp. parasite in oysters of southern China. Journal of Eukaryotic Microbiology 55, 117130.Google Scholar
Murina, G. V. and Solonchenko, A. I. (1991). Commensals of Mytilus galloprovincialis in the Black Sea: Urastoma cyrinae (Turbellaria) and Polydora ciliata (Polychaeta). In The Biology of the Turbellaria (ed. Schockaert, E. R. and Ball, I. R.), pp. 385387. Springer, The Hague, The Netherlands.Google Scholar
Nunn, C. L., Altizer, S. M., Sechrest, W. and Cunningham, A. A. (2005). Latitudinal gradients of parasite species richness in primates. Diversity and Distributions 11, 249256.Google Scholar
Olsson, A. A. (1972). Origin of the existing Panamic molluscan biotas in terms of their geologic history and their separation by the Isthmian land barrier. In The Panamic Biota: Some Observations Prior to a Sea-Level Canal (ed. Jones, M. L.), pp. 117124. Bulletin of the Biological Society of Washington, Washington, DC.Google Scholar
Pagenkopp Lohan, K. M., Hill-Spanik, K. M., Torchin, M. E., Strong, E. E., Fleischer, R. C. and Ruiz, G. M. (2015). Molecular phylogenetics reveals first record and invasion of Saccostrea species in the Caribbean. Marine Biology 162, 957968.CrossRefGoogle Scholar
Poulin, R. (2004). Macroecological patterns of species richness in parasite assemblages. Basic and Applied Ecology 5, 423434.Google Scholar
Poulin, R. (2007). Are there general laws in parasite ecology? Parasitology 134, 763.CrossRefGoogle ScholarPubMed
Poulin, R. (2010). Latitudinal gradients in parasite diversity: bridging the gap between temperate and tropical areas. Neotropical Helminthology 4, 169177.Google Scholar
Poulin, R., Krasnov, B. R., Mouillot, D. and Thieltges, D. W. (2011). The comparative ecology and biogeography of parasites. Philosophical Transactions: Biological Sciences 366, 23792390.Google Scholar
Prenter, J., MacNeil, C., Dick, J. T. and Dunn, A. M. (2004). Roles of parasites in animal invasions. Trends in Ecology & Evolution 19, 385390.Google Scholar
Reece, K. S., Dungan, C. F. and Burreson, E. M. (2008). Molecular epizootiology of Perkinsus marinus and P. chesapeaki infections among wild oysters and clams in Chesapeake Bay, USA. Diseases of Aquatic Organisms 82, 237248.Google Scholar
Renault, T., Stokes, N. A., Chollet, B., Cochennec, N., Berthe, F. C. J., Gerard, A. and Burreson, E. M. (2000). Haplosporidiosis in the Pacific oyster Crassostrea gigas from the French Atlantic coast. Diseases of Aquatic Organisms 42, 207.Google Scholar
Ronquist, F. and Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 15721574.Google Scholar
Ruiz, G. M., Torchin, M. E. and Grant, K. (2009). Using the Panama Canal to Test Predictions about Tropical Marine Invasions. Smithsonian Institution, Washington, DC.Google Scholar
Schemske, D. W., Mittelbach, G. G., Cornell, H. V., Sobel, J. M. and Roy, K. (2009). Is there a latitudinal gradient in the importance of biotic interactions? Annual Review of Ecology, Evolution, and Systematics 40, 245269.Google Scholar
Smith, J. T., Jackson, J. B. and Fortunato, H. (2006). Diversity and abundance of tropical American scallops (Bivalvia: Pectinidae) from opposite sides of the central American Isthmus. Veliger 48, 2645.Google Scholar
Taraschewski, H. (2006). Hosts and parasites as aliens. Journal of Helminthology 80, 99128.Google Scholar
Torchin, M. E., Muira, O. and Hechinger, R. F. (2015). Parasite species richness and intensity of interspecific interactions increase with latitude in two wide-ranging hosts. Ecology http://dx.doi.org/10.1890/15-0518.1 Google Scholar
Torres, J., Miquel, J., Casanova, J. C., Ribas, A., Feliu, C. and Morand, S. (2006). Endoparasite species richness of Iberian carnivores: influences of host density and range distribution. Biodiversity and Conservation 15, 46194632.Google Scholar
Villalba, A., Reece, K. S., Camino Ordás, M., Casas, S. M. and Figueras, A. (2004). Perkinsosis in molluscs: a review. Aquatic Living Resources 17, 411432.Google Scholar
Wang, Z., Lu, X., Liang, Y. and Wang, C. (2010). Haplosporidium nelsoni and H. costale in the Pacific oyster Crassostrea gigas from China's coasts. Diseases of Aquatic Organisms 89, 223228.CrossRefGoogle Scholar
Wood, J. L. and Andrews, J. D. (1962). Haplosporidium costale (Sporozoa) associated with a disease of Virginia oyster. Science 136, 710711.Google Scholar
Supplementary material: File

Pagenkopp Lohan supplementary material

Supplementary Table

Download Pagenkopp Lohan supplementary material(File)
File 380.3 KB