Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T00:36:13.231Z Has data issue: false hasContentIssue false

Random amplified polymorphic DNA technique for the identification of Trichinella species

Published online by Cambridge University Press:  06 April 2009

C. Bandi
Affiliation:
Istituto di Patologia Generate Veterinaria, Università di Milano, Milan, Italy
G. La Rosa
Affiliation:
Laboratory of Parasitology, Istituto Superiore di Sanità, viale R. Elena 299, 00161 Rome, Italy
S. Comincini
Affiliation:
I.D.V.G.A.-C.N.R., Milan, Italy
G. Damiani
Affiliation:
I.D.V.G.A.-C.N.R., Milan, Italy
E. Pozio
Affiliation:
Laboratory of Parasitology, Istituto Superiore di Sanità, viale R. Elena 299, 00161 Rome, Italy

Summary

The random amplified polymorphic DNA (RAPD) technique was successfully used to produce genetic fingerprints distinguishing between Trichinella spiralis and Trichinella britovi. The same patterns were obtained from purified and crude DNA preparations of pooled and single muscle larvae. RAPD fingerprinting was applied to muscle larvae preserved under different conditions and recovered from different hosts. Larvae recovered from fresh and frozen meat and stored at – 20 °C for a long time or under 70% ethyl alcohol at room temperature for 30 d gave good and reproducible results. Single larvae recovered from a naturally infected wild boar and from a human biopsy gave fingerprints congruent to those obtained from T. britovi reference strains. The results prove that RAPD analysis is a quick method to distinguish between the autochthonous Trichinella species of Central-Southern Europe in less than 1 d after the detection of the infection. If necessary, the biological material can be frozen or stored under 70% ethyl alcohol at room temperature and sent to laboratories able to perform the RAPD analysis. The RAPD technique requires no prior knowledge of the molecular biology of the organism to be investigated and therefore appears to be a promising tool in parasitology for the identification of sibling species.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Devos, K. M. & Gale, M. D. (1992). The use of random amplified polymorphic DNA markers in wheat. Theoretical and Applied Genetics 84, 567–72.Google Scholar
De Vos, T., Klassen, G. R. & Dick, T. A. (1988). Sequence analysis of a 1·6-kb element from a porcine isolate of Trichinella spiralis. Nucleic Acids Research 16, 3114.Google Scholar
Dick, T. A., Lu, M., De Vos, T. & Ma, K. (1992). The Use of the polymerase chain reaction to identify porcine isolates of Trichinella. Journal of Parasitology 78, 145–8.CrossRefGoogle ScholarPubMed
Dupouy-Camet, J., Soulé, C., Guillon, J.-P., Rouer, E., Lavareda De Souza, S., Ancelle, T. & Bénarous, R. (1991). Detection of repetitive sequences of Trichinella spiralis by the polymerase chain reaction in experimentally infected mice. Parasitology Research 77, 180–2.Google Scholar
Greer, C. E., Lund, J. K. & Manos, M. M. (1991). PCR amplification from paraffin-embedded tissues: recommendations on fixatives for long-term storage and prospective studies. PCR Methods and Applications 1, 4650.Google Scholar
Hadrys, H., Balick, M. & Schierwater, B. (1992). Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Molecular Ecology 1, 5563.CrossRefGoogle ScholarPubMed
Kaemmer, D., Afza, R., Weising, K., Kahl, G. & Novak, F. J. (1992). Oligonucleotide and amplification fingerprinting of wild species and cultivars of banana (Musa spp.). Bio/Technology 10, 1030–5.Google Scholar
La Rosa, G., Pozio, E., Barrat, J. & Blancou, J. (1991). Identification of sylvatic Trichinella (T3) in foxes from France. Veterinary Parasitology 40, 113–17.CrossRefGoogle ScholarPubMed
La Rosa, G., Pozio, E., Rossi, P. & Murrell, K. D. (1992). Allozyme analysis of Trichinella isolates from various host species and geographical regions. Journal of Parasitology 78, 641–6.Google Scholar
Martin, G. B., Williams, J. K. G. & Tanksley, S. D. (1991). Rapid identification of markers linked to a Pseudomonas resistance gene in tomato using random primers and near-isogenic lines. Proceedings of the National Academy of Sciences, USA 88, 2336–40.Google Scholar
Pozio, E. (1987). Isoenzymatic typing of 23 Trichinella isolates. Tropical Medicine and Parasitology 38, 111–16.Google ScholarPubMed
Pozio, E. (1991). La Volpe (Vulpes vulpes L.) principale serbatoio della trichinellosi in Italia. Hystrix 3, 175–86.Google Scholar
Pozio, E., Gramiccia, M., Mantovani, A., Massi, O. & Mantovani, A. (1986). Infezione sperimentale del suino con un ceppo italiano di Trichinella sp. e resistenza delle larve in alcuni prodotti salumieri. Annali dell' Istituto Superiore di Sanità 22, 461–4.Google Scholar
Pozio, E., La Rosa, G., Murrell, K. D. & Lichtenfels, J. R. (1992 b). Taxonomic revision of the genus Trichinella. Journal of Parasitology 78, 654–9.Google Scholar
Pozio, E., La Rosa, G., Rossi, P. & Murrell, K. D. (1992 a). Biological characterization of Trichinella isolates from various host species and geographical regions. Journal of Parasitology 78, 647–53.CrossRefGoogle ScholarPubMed
Pozio, E., Varese, P., Gomez Morales, M. A., Croppo, G. P., Pelliccia, D. & Bruschi, F. (1993). Comparison of human trichinellosis caused by Trichinella spiralis and by Trichinella britovi. American Journal of Tropical Medicine and Hygiene 48, 568–75.Google Scholar
Rossi, L., Pozio, E., Mignone, W., Ercolini, C. & Dini, V. (1993). Epidemiology of sylvatic trichinellosis in Northwestern Italy. Revue Scientifique et Technique de l'office International des Epizooties 11, 1039–46.CrossRefGoogle Scholar
Sambrook, J., Frisch, E. F. & Maniatis, T. (1989). Molecular Cloning: a Laboratory Manual. New York: Cold Spring Harbor Laboratory Press.Google Scholar
Sneath, P. H. A. & Sokal, R. R. (1973). Numerical Taxonomy. San Francisco: Freeman.Google Scholar
Welsh, J. & McClelland, M. (1990). Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research 18, 7213–18.CrossRefGoogle ScholarPubMed
Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A. & Tingey, S. V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18, 6531–5.CrossRefGoogle ScholarPubMed
Zarlenga, D. S. & Barta, J. R. (1990). DNA analysis in the diagnosis of infection and in the speciation of nematode parasites. Revue Scientifique et Technique de l'Office International des Epizooties 9, 533–54.CrossRefGoogle ScholarPubMed