Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T07:43:23.509Z Has data issue: false hasContentIssue false

New data on flatfish scuticociliatosis reveal that Miamiensis avidus and Philasterides dicentrarchi are different species

Published online by Cambridge University Press:  29 May 2017

ANA-PAULA DE FELIPE
Affiliation:
Departamento de Microbiología y Parasitología, Instituto de Investigación y Análisis Alimentarios, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
JESÚS LAMAS
Affiliation:
Departamento de Biología Celular y Ecología, Instituto de Acuicultura, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
ROSA-ANA SUEIRO
Affiliation:
Departamento de Microbiología y Parasitología, Instituto de Investigación y Análisis Alimentarios, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain Departamento de Biología Celular y Ecología, Instituto de Acuicultura, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
IRIA FOLGUEIRA
Affiliation:
Departamento de Microbiología y Parasitología, Instituto de Investigación y Análisis Alimentarios, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
JOSÉ-MANUEL LEIRO*
Affiliation:
Departamento de Microbiología y Parasitología, Instituto de Investigación y Análisis Alimentarios, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
*
*Corresponding author: Laboratorio de Parasitología, Instituto de Investigación y Análisis Alimentarios, c/ Constantino Candeira s/n, 15782, Santiago de Compostela (A Coruña), Spain. E-mail: josemanuel.leiro@usc.es

Summary

Scuticociliatosis is a severe disease in farmed flatfish. However, the causative agent is not always accurately identified. In this study, we identified two isolates of scuticociliates from an outbreak in cultured fine flounder Paralichthys adspersus. Scuticociliate identification was based on morphological data, examination of life stages and the use of molecular approaches. The isolates were compared with a strain of Philasterides dicentrachi from turbot Scophthalmus maximus and with a strain deposited in the American Type Culture Collection as Miamiensis avidus ATCC® 50180. The use of morphological, biological and molecular methods enabled us to identify the isolates from the fine flouder as P. dicentrarchi. Comparison of P. dicentrachi isolates and M. avidus revealed some differences in the buccal apparatus. Unlike P. dicentrarchi, M. avidus has a life cycle with three forms: macrostomes (capable of feeding on P. dicentrarchi), microstomes and tomites. Additionally, we found differences in the 18S rRNA and α- and β-tubulin gene sequences, indicating that P. dicentrarchi and M. avidus are different species. We therefore reject the synonymy/conspecificity of the two taxa previously suggested. Finally, we suggest that a combination of morphological, biological, molecular (by multigene analysis) and serological techniques could improve the identification of scuticociliates parasites in fish.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aescht, E. (2001). Generic names of ciliates (Protozoa, Ciliophora). Denisia 1, 1350.Google Scholar
Azad, I. S., Al-Marzouk, A., James, C. M., Almatar, S. and Al-Gharabally, H. (2007). Scuticociliatosis-associated mortalities and histopathology of natural infection in cultured silver pomfret (Pampus argenteus Euphrasen) in Kuwait. Aquaculture 262, 202210.Google Scholar
Bonar, C. J., Garner, M. M., Weber, E. S., Keller, C. J., Murray, M., Adams, L. M. A. and Frasca, S. Jr. (2013). Pathologic findings in weedy (Phyllopteryx taeniolatus) and leafy (Phycodurus eques) seadragons. Veterinary Pathology 50, 368376.Google Scholar
Bordier, C. (1981). Phase separation of integral membrane proteins in Triton X-114. The Journal of Biological Chemistry 256, 16041607.Google Scholar
Budiño, B., Lamas, J., Pata, M. P., Arranz, J. A., Sanmartín, M. L. and Leiro, J. (2011 a). Intraspecific variability in several isolates of Philasterides dicentrarchi (syn. Miamiensis avidus), a scuticociliate parasite of farmed turbot. Veterinary Parasitology 175, 260272.Google Scholar
Budiño, B., Lamas, J., González, A., Pata, M. P., Devesa, S., Arranz, J. A. and Leiro, J. (2011 b). Coexistence of several Philasterides dicentrarchi strains on a turbot fish farm. Aquaculture 322–323, 2332.Google Scholar
Budiño, B., Leiro, J., Cabaleiro, S. and Lamas, J. (2012). Characterization of Philasterides dicentrarchi isolates that are pathogenic to turbot: serology and cross-protective immunity. Aquaculture, 364–365, 130136.Google Scholar
Declercq, A. M., Chiers, K., Van den Broeck, W., Rekecki, A., Teerlinck, S., Adriaens, D., Haesebrouck, F. and Decostere, A. (2014). White necrotic tail tips in estuary seahorses, Hippocampus kuda, Bleeker. Journal of Fish Diseases 37, 501504.Google Scholar
de Waal, T. (2012). Advances in diagnosis of protozoan diseases. Veterinary Parasitology 189, 6574.Google Scholar
di Cicco, E., Paradis, E., Stephen, C., Turba, M. E. and Rossi, G. (2013). Scuticociliatid ciliate outbreak in Australian potbellied sea horse, Hippocampus abdominalis (Lesson, 1827): clinical signs, histopathological findings, and treatment with metronidazole. Journal of Zoo and Wildlife Medicine 44, 435440.Google Scholar
Dickerson, H. W., Clark, T. G. and Findly, R. C. (1989). Icththyophthirius multifiliis has membrane-associated immobilization antigens. Journal of Protozoology 36, 159164.Google Scholar
Dragesco, A., Dragesco, J., Coste, F., Gasc, C., Romestand, B., Raymond, J. and Bouix, G. (1995). Philasterides dicentrarchi, n. Sp. (Ciliophora, Scuticociliatida), a histiophagous opportunistic parasite of Dicentrarchus labrax (Linnaeus, 1758), a reared marine fish. European Journal of Protistology 31, 327340.Google Scholar
Fan, X., Hu, X., Al-Farraj, S. A., Clamp, J. C. and Song, W. (2011). Morphological description of three marine ciliates (Ciliophora, Scuticociliatia), with establishment of a new genus and two species. European Journal of Protistology 47, 186196.Google Scholar
Felsenstein, J. (1985). Confidence limits on phylogenies: and approach using the boostrap. Evolution 39, 783791.Google Scholar
Fenchel, T. (1987). Adaptative significance of polymorphic life cycles in protozoa: resposes to starvation and reffeding in two species of marine ciliates. Journal of Experimental Marine Biology and Ecology 136, 159177.Google Scholar
Fernández-Galiano, D. (1994). The ammoniacal silver carbonate method as a general procedure in the study of protozoa from sewage (and other) waters. Water Research 28, 495496.Google Scholar
Gao, F., Fan, X., Yi, Z., Strüder-Kypke, M. and Song, W. (2010). Phylogenetic consideration of two scuticociliate genera, Philasterides and Boveria (Protozoa, Ciliophora) based on 18 S rRNA gene sequences. Parasitology International 59, 549555.Google Scholar
Gao, F., Katz, L. A. and Song, W. (2012). Insights into the phylogenetic and taxonomy of philasterid ciliates (Protozoa, Ciliophora, Scuticociliatia) based on analyses of multiple molecular markers. Molecular Phylogenetics and Evolution 64, 308317.Google Scholar
Gao, F., Katz, L. A. and Song, W. (2013). Multigene-based analyses on evolutionary phylogeny of two controversial ciliate orders: Pleuronematida and Loxocephalida (Protista, Ciliophora, Oligohymenophorea). Molecular Phylogenetics and Evolution 68, 5563.Google Scholar
Gómez-Saladín, E. and Small, E. B. (1993 a). Oral morphogenesis of the microstome to macrostome transformation in Miamiensis avidus strain Ma/2. Journal of Eukaryotic Microbiology 40, 363370.Google Scholar
Gómez-Saladin, E. and Small, E. B. (1993 b). Starvation induces tomitogenesis in Miamiensis avidus strain Ma/2. Journal of Eukaryotic Microbiology 40, 727730.Google Scholar
Grolière, C. A. (1980). Morphologie et stomatogenèse chez deux ciliés Scuticociliatida des genres Phïlasterides Kahl, 1926 et Cyclidium O. F. Müller; 1786. Acta Protozoologica 19, 195206.Google Scholar
Harikrishnan, R., Balasundaram, C. and Heo, M. S. (2010). Scuticociliatosis and its recent prophylactic measures in aquaculture with special reference to South Korea Taxonomy, diversity and diagnosis of scuticociliatosis: Part I Control strategies of scuticociliatosis: Part II. Fish and Shellfish Immunology 29, 1531.Google Scholar
Harikrishnan, R., Jin, C. N., Kim, J. S., Balasundaram, C. and Heo, M. S. (2012). Philasterides dicentrarchi, a histophagous ciliate causing scuticociliatosis in olive flounder, Philasterides dicentrarchi – Histopathology investigations. Experimental Parasitology 130, 239245.Google Scholar
Hu, X., Song, W. and Warren, A. (2009). Scuticociliatids. In Free-living Ciliates in Bohai and Yellow Sea, China (ed. Song, W., Warren, A. and Hu, X.). Science Press, Beijing. v pp. 172–179.Google Scholar
Iglesias, R., Paramá, A., Álvarez, M. F., Leiro, J., Fernández, J. and Sanmartín, M. L. (2001). Philasterides dicentrarchi (Ciliophora, Scuticociliatida) as the causative agent of scuticociliatosis in farmed turbot, Scophthalmus maximus in Galicia (NW Spain). Diseases of Aquatic Organisms 46, 4755.Google Scholar
Iglesias, R., Paramá, A., Álvarez, M. F., Leiro, J., Aja, C. and Sanmartín, M. L. (2003 a). In vitro growth requeriments for the fish pathogen Philasterides dicentrarchi (Ciliophora, Scuticociliatida). Veterinary Parasitology 111, 1930.Google Scholar
Iglesias, R., Paramá, A., Álvarez, M. F., Leiro, J., Ubeira, F. M. and Sanmartín, M. L. (2003 b). Philasterides dicentrarchi (Ciliophora: Scuticociliatida) express surface immobilization antigens that probably induce protective immune responses in turbot. Parasitology 126, 125134.Google Scholar
Ito, H., Fukuda, Y., Murata, K. and Kimura, A. (1983). Transformation of intact yeast cells treated with alkali cations. Journal of Bacteriology 153, 163168.Google Scholar
Jung, S. J., Kitamura, S. I., Song, J. Y., Joung, I. Y. and Oh, M. J. (2005). Complete small subunit rRNA gene sequence of the scuticociliate Miamiensis avidus pathogenic to olive flounder Paralichthys olivaceus . Diseases of Aquatic Organisms 64, 159162.Google Scholar
Jung, S. J., Kitamura, S. I., Song, J. Y. and Oh, M. J. (2007). Miamiensis avidus (Ciliophora: Scuticociliatida) causes systemic infection of olive flounder Paralichthys olivaceus and is a senior synonym of Philasterides dicentrarchi . Diseases of Aquatic Organisms 73, 227234.Google Scholar
Jung, S. J., Im, E. Y., Struder-Kypke, M. C., Kitamura, S. and Woo, P. T. (2011). Small subunit ribosomal RNA and mitochondrial cytochrome c oxidase subunit 1 gene sequences of 21 strains of the parasitic scuticociliate Miamiensis avidus (Ciliophora, Scuticociliatia). Parasitology Research 108, 11531161.Google Scholar
Kaneshiro, E. S., Dunham, P. B. and Holz, G. G. (1969). Osmorregulation in a marine ciliate, Miamiensis avidus. I. Regulation of inorganic ions and water. Biological Bulletin 136, 6575.Google Scholar
Kim, S. M., Cho, J. B., Kim, S. K., Nam, Y. K. and Kim, K. H. (2004). Occurrence of scuticociliatosis in olive flounder Paralichthys olivaceus by Philasterides dicentrarchi (Ciliophora: scuticociliatia). Diseases of Aquatic Organisms 62, 23332338.Google Scholar
Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111120.Google Scholar
Kumar, S., Stecher, G. and Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33: 18701873.Google Scholar
Leiro, J., Siso, M. I., Paramá, A., Ubeira, F. M. and Sanmartín, M. L. (2000). RFLP analysis of PCR-amplified small subunit ribosomal DNA of three fish microsporidian species. Parasitology 124, 145151.Google Scholar
Long, H. and Zufall, R. A. (2010). Diverse modes of reproduction in the marine free-living ciliate Glauconema trihymene . BioMed Central Microbiology 10, 108.Google Scholar
López-López, O., Fuciños, P., Pastrana, L., Rúa, M. L., Cerdán, M. E. and González-Siso, M. I. (2010). Heterologous expression of an esterase from Thermus thermophilus HB27 in Saccharomyces cerevisiae . Journal of Biotechnology 145, 226232.Google Scholar
Lynn, D. H. and Strüder-Kypke, M. (2005). Scuticociliate endosymbionts of echinoids (phylum Echinodermata): phylogenetic relationships among species in the genera Entodiscus, Plagiopyliella, Thyrophylax, and Entorhipidium (phylum Ciliophora). Journal of Parasitology 91, 11901199.Google Scholar
Mallo, N., Lamas, J. and Leiro, J. M. (2013). Evidence of an alternative oxidase pathway for mitochondrial respiration in the scuticociliate Philasterides dicentrarchi . Protist 164, 824836.Google Scholar
McWilliam, H., Li, W., Uludag, M., Squizzato, S., Park, Y. M., Buso, N., Cowley, A. P. and López, R. (2013). Analysis tool web services from the EMBL-EBI. Nucleic Acids Research 41(Web Server issue), W597W600.Google Scholar
Miao, M., Warren, A., Song, W., Wang, S., Shang, H. and Chen, Z. (2008). Analysis of internal transcribed spacer 2 (ITS2) region of scuticociliates and related taxa (Ciliophora, Oligohymenophorea) to infer their evolution and phylogeny. Protist 159, 519533.Google Scholar
Miao, M., Wang, Y., Song, W., Clamp, J. C. and Al-Rasheid, K. A. S. (2010). Description of Eurystomatella sinica n. gen., n. sp., with establishment of a new family Eurystomatellidae n. fam. (Protista, Ciliophora, Scuticociliatia) and analyses of its phylogeny inferred from sequences of the small-subunit rRNA gene. International Journal of Systematic and Evolutionary Microbiology 60, 460468.Google Scholar
Moewus, L. (1963). Studies on a marine parasitic ciliate as a potential virus vector. In Symp. on Marine Microbiology (ed. Oppenheimer, C. H.), pp. 366379. Charles C. Thomas, Springfield, IL.Google Scholar
Morais, P., Lamas, J., Sanmartín, M. L., Orallo, F. and Leiro, J. (2009). Resveratrol induces mitochondrial alterations, autophagy and a cryptobiosis-like state in scuticociliates. Protist 160, 552564.Google Scholar
Moustafa, E. M. M., Naota, M., Morita, T., Tange, N. and Shimada, A. (2010). Pathological study on the scuticociliatosis affecting farmed Japanese flounder (Paralichthys olivaceus) in Japan. Journal of Veterinary Medical Science 72, 13591362.Google Scholar
Munday, B. L., O’Donoghue, P. J., Watts, M., Rough, K. and Hawkesford, T. (1997). Fatal encephalitis due to the scuticociliate Uronema nigricans in sea-caged, southern bluefin tuna Thunnus maccoyii . Diseases of Aquatic Organisms 30, 1725.Google Scholar
Myburg, H., Gryzenhout, M., Wingfield, B. D., Wingfield, M. D. (2003). Conspecificity of Enothia eugeniae and Cryphonectria cubensis: a re-evaluation based on morphology and DNA sequence data. Mycoscience 44, 187196.Google Scholar
Ofelio, C., Blanco, A., Roura, A., Pintado, J., Pascual, S. and Planas, M. (2014). Isolation and molecular identification of the scuticociliate Porpostoma notata Moebius, 1888 from moribund reared Hippocampus hippocampus (L.) seahorses, by amplification of the SSU rRNA gene sequences. Journal of Fish Diseases 37, 10611065.Google Scholar
Pan, X., Zhu, M., Ma, H., Al-Rasheid, K. A. and Hu, X. (2013). Morphology and small-subunit rRNA gene sequences of two novel marine ciliates, Metanophrys orientalis spec. nov. and Uronemella sinensis spec. nov. (Protista, Ciliophora, Scuticociliatia), with an improved diagnosis of the genus Uronemella . International Journal of Systematic and Evolutionary Microbiology 63, 3515–23.Google Scholar
Paramá, A., Iglesias, R., Álvarez, M. F., Leiro, J., Aja, C. and Sanmartín, M. L. (2003). Philasterides dicentrarchi (Ciliophora, Scuticociliatida): experimental infection and posible routes of entry in farmed turbot (Scophthalmus maximus). Aquaculture 217, 7380.Google Scholar
Paramá, A., Arranz, J. A., Álvarez, M. F., Sanmartín, M. L. and Leiro, J. (2006). Ultrastructure and phylogeny of Philasterides dicentrarchi (Ciliophora: Scuticociliatia) from farmed turbot in NW Spain. Parasitology 132, 555564.Google Scholar
Piazzon, C., Lamas, J., Castro, R., Budiño, B., Cabaleiro, S., Sanmartín, M. L. and Leiro, J. (2008). Antigenic and cross-protection studies on two turbot scuticociliate isolates. Fish and Shellfish Immunology 25, 417424.Google Scholar
Piazzon, C., Lamas, J. and Leiro, J. M. (2011). Role of scuticociliate proteinases in infection success in turbot, Psetta maxima (L.). Parasite Immunology 33, 535544.Google Scholar
Ramos, M. F., Costa, A. R., Barandela, T., Saraiva, A. and Rodrigues, P. N. (2007). Scuticociliate infection and pathology in cultured turbot Scophthalmus maximus from the north of Portugal. Diseases of Aquatic Organisms 74, 249253.Google Scholar
Rossteuscher, S., Wenker, C., Jermann, T., Wahli, T., Oldenberg, E. and Schmidt-Posthaus, H. (2008). Severe scuticociliate (Philasterides dicentrarchi) infection in a population of sea dragons (Phycodurus eques and Phylopteryx taeniolatus). Veterinary Parasitology 45, 546550.Google Scholar
Saitou, N. and Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406425.Google Scholar
Shin, P. S., Han, J. E., Gómez, D. K., Kim, J. H., Choresca, C. H. Jr., Jun, J. W. and Park, S. C. (2011). Identification of scuticociliate Philasterides dicentrarchi from indo-pacific seahorses Hippocampus kuda . African Journal of Microbiology Research 5, 738741.Google Scholar
Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., López, R., McWilliam, H., Remmert, M., Söding, J., Thompson, J. D. and Higgins, D. G. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology 7, 539.Google Scholar
Small, E. B. (1967). The Scuticociliatida, a new order of the Class Ciliatea (phylum Protozoa, subphylum Ciliophora). Transactions of the American Microscopical Society 86, 345370.Google Scholar
Small, H. J., Neil, D. M., Taylor, A. C., Bateman, K. and Coombs, G. H. (2005). A parasitic scuticociliate infection in the Norway lobster (Nephrops norvegicus). Journal of Invertebrate Pathology 90, 108117.Google Scholar
Smith, P. J., McVeagh, S. M., Hulston, D., Anderson, S. A. and Gublin, Y. (2009). DNA identification of ciliates associated with disease outbreaks in a New Zealand marine fish hatchery. Diseases of Aquatic Organisms 86, 163167.Google Scholar
Soldo, A. T. and Merlin, E. J. (1972). The cultivation of symbiont-free marine ciliates in axenic medium. Journal of Protozoology 19, 519524.Google Scholar
Song, J. Y., Kitamura, S., Oh, M. J., Kang, H. S., Lee, J. H., Tanaka, S. J. and Jung, S. J. (2009 a). Pathogenicity of Miamiensis avidus (syn. Philasterides dicentrarchi), Pseudocohnilembus persalinus, Pseudocohnilembus hargisi and Uronema marinum (Ciliophora, Scuticociliatida). Diseases of Aquatic Organisms 83, 133143.Google Scholar
Song, J. Y., Sasaki, K., Okada, T., Sakashita, M., Kawahami, H., Matsuoka, S., Kan, H. S., Nakayama, K., Jung, S. J., Oh, M. J. and Kitamura, S. I. (2009 b). Antigenic differences of the scuticociliate Miamiensis avidus from Japan. Journal of Fish Disesases 32, 10271034.Google Scholar
Song, W. (2000). Morphological and taxonomical studies on some marine scuticociliates from China Sea, with description of 2 new species, Philasterides armatalis sp. n. and Cyclidium varibonneti sp. n. (Protozoa: Ciliophora: Scuticociliatida). Acta Protozoologica 39, 295322.Google Scholar
Song, W. B. and Wilbert, N. (2000). Redefinition and redescription of some marine scuticociliates from China, with report of a new species, Metanophrys sinensis nov. Spec. (Ciliophora, Scuticociliatida). Zoologischer Anzeiger 239, 4574.Google Scholar
Stidworthy, M. F., Garner, M. M., Bradway, D. S., Westfall, B. D., Joseph, B., Repetto, S., Guglielmi, E., Schmidt-Posthaus, H. and Thornton, S. M. (2014). Nondomestic, exotic, wildlife and zoo animals systemic scuticociliatosis (Philasterides dicentrarchi) in sharks. Veterinary Pathology 51, 628663.Google Scholar
Thompson, J. C. and Moewus, L. (1964). Miamiensis avidus n. g., n. sp., a marine facultative parasite in the ciliate order Hymenostomatida. Journal of Protozoology 11, 378381.Google Scholar
Umehara, A., Kosuga, Y. and Hirose, H. (2003). Scuticociliata infection in the weedy sea dragon Phyllopteryx taeniolatus . Parasitology International 52, 165168.Google Scholar
Whang, I., Kang, H. S. and Lee, J. (2013). Identification of scuticociliates (Pseudocohnilembus persalinus, P. longisetus, Uronema marinum and Miamiensis avidus) based on the cox1 sequence. Parasitology International 62, 713.Google Scholar
Supplementary material: File

De Felipe supplementary material

Supplementary Table

Download De Felipe supplementary material(File)
File 135.4 KB