Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-24T23:02:48.777Z Has data issue: false hasContentIssue false

Neuropeptides in the nematode Ascaris suum

Published online by Cambridge University Press:  06 April 2009

A. O. W. Stretton
Affiliation:
Department of Zoology, University of Wisconsin-Madison, Madison, WI 53706, USA Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
C. Cowden
Affiliation:
Department of Zoology, University of Wisconsin-Madison, Madison, WI 53706, USA
P. Sithigorngul
Affiliation:
Department of Zoology, University of Wisconsin-Madison, Madison, WI 53706, USA
R. E. Davis
Affiliation:
Department of Zoology, University of Wisconsin-Madison, Madison, WI 53706, USA

Extract

Most of the successful anti-nematode drugs currently available affect the nematode locomotory system. Their success is due to their interactions with molecules associated with the main neuro-transmitters of the motor nervous system, acetylcholine and GABA. These drugs tend to have a relatively broad spectrum of action, affecting a wide variety of nematodes, presumably because nematode motor nervous systems are conservative in their use of these transmitters.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angstadt, J. D., Donmoyer, J. E. & Stretton, A. O. W. (1989). The retrovesicular ganglion of the nematode Ascaris. Journal of Comparative Neurology 284, 374–88.CrossRefGoogle ScholarPubMed
Angstadt, J. D. & Stretton, A. O. W. (1989). Characterization of slow active potentials in ventral inhibitory motorneurons of the nematode Ascaris. Journal of Comparative Physiology 166, 165–77.Google Scholar
Bulloch, A. G. M., Price, D. A., Murphy, A. D., Lee, T. D. & Bowes, H. N. (1988). FMRFamide peptides in Helisoma: identification and physiological actions at a peripheral synapse. Journal of Neuroscience 8, 3459–69.CrossRefGoogle Scholar
Cobb, N. A. (1914). Nematodes and their relationships. U.S. Department of Agriculture Yearbook for 1914 457–90.Google Scholar
Cottrell, G. A. & Davies, N. W. (1987). Multiple receptor sites for a molluscan peptide (FMRFamide) and related peptides of Helix. Journal of Physiology 382, 5168.CrossRefGoogle ScholarPubMed
Cowden, C. & Stretton, A. O. W. (1990). AF2, anematode neuropeptide. Society of Neurosciences Abstracts 16, 305.Google Scholar
Cowden, C., Stretton, A. O. W. & Davis, R. E. (1989). AF1, a sequenced bioactive neuropeptide isolated from the nematode Ascaris. Neuron 2, 1465–73.CrossRefGoogle ScholarPubMed
Davenport, T. R. B., Lee, D. L. & Isaac, R. E. (1988). Immunocytochemical demonstration of a neuropeptide in Ascaris suum (Nematoda) using an antiserum to FMRFamide. Parasitology 97, 81–8.CrossRefGoogle ScholarPubMed
Davis, R. E. & Stretton, A. O. W. (1989 a). Passive membrane properties of motorneurons and their role in long distance signaling in the nematode Ascaris. Journal of Neuroscience 9, 403–14.CrossRefGoogle ScholarPubMed
Davis, R. E. & Stretton, A. O. W. (1989 b). Signaling properties of Ascaris motorneurons: graded active responses, graded synaptic transmission, and tonic transmitter release. Journal of Neuroscience 9, 415–25.CrossRefGoogle ScholarPubMed
Desai, C., Garriga, G., McIntire, S. L. & Horvitz, H. R. (1988). A genetic pathway for the development of the Caenorhabditis elegans HSN motor neurons. Nature, London 336, 638–46.CrossRefGoogle ScholarPubMed
Dockray, G. J., Reeve, J. R., Shively, J., Gayton, R. J. & Barnahd, C. S. (1983). A novel active pentapeptide from chicken brain identified by antibodies to FMRFamide. Nature, London 305, 328–30.CrossRefGoogle ScholarPubMed
Ebberink, R. H., Price, D. A., Loenhout, H.Van, Doble, K. E., Riehm, J. P., Gaerarts, W. P. & Greenberg, M. J. (1987). The brain of Lymnaea contains a family of FMRFamide-like peptides. Peptides 8, 515–22.CrossRefGoogle ScholarPubMed
Fisher, J. M., Sossin, W., Newcomb, R. & Scheller, R. H. (1988). Multiple neuropeptides derived from a common precursor are differentially packaged and transported. Cell 54, 813–22.CrossRefGoogle ScholarPubMed
Grimmelikhuijzen, C. J. P. & Graff, D. (1986). Isolation of Glu-Gly-Arg-Phe-NH2 (antho-RFamide), a neuropeptide from sea anemones. Proceedings of the National Academy of Sciences, USA 83, 9817–21.CrossRefGoogle Scholar
Holman, G. M., Cook, B. J. & Nachman, R. J. (1986). Isolation, primary structure and synthesis of leucomyosuppressin, an insect neuropeptide that inhibits spontaneous concentrations of the cockroach hindgut. Comparative Biochemistry and Physiology 85 C, 329–33.Google Scholar
Johnson, C. D. & Stretton, A. O. W. (1987). GABA-immunoreactivity in inhibitory motor neurons of the nematode Ascaris. Journal of Neuroscience 7, 223–35.CrossRefGoogle ScholarPubMed
Kobierski, L. A., Beltz, B. S., Trimmer, B. A. & Kravitz, E. A. (1987). FMRFamide-like peptides of Homarus americanus: distribution, immunocytochemical mapping, and ultrastructural localization in terminal varicosities. Journal of Comparative Neurology 266, 115.CrossRefGoogle Scholar
Leach, L., Trudgill, D. L. & Gahan, P. B. (1987). Immunocytochemical localization of neurosecretory amines and peptides in the free-living nematode Goodeyus ulmi. Histochemistry 19, 471–5.CrossRefGoogle ScholarPubMed
Lehman, H. K. & Greenberg, M. J. (1987). The actions of FMRFamide-like peptides on visceral and somatic muscles of the snail Helix aspersa. Journal of Experimental Biology 131, 5568.CrossRefGoogle ScholarPubMed
Li, C. (1990). FMRFamide-like peptides in C. elegans: developmental expression and cloning and sequencing of the gene. Society of Neurosciences Abstracts 16, 305.Google Scholar
Li, C. & Chalfie, M. (1986). FMRFamide-like immunoreactivity in C. elegans. Society of Neuroscience Abstracts 12, 246.Google Scholar
Linacre, A., Kellett, E., Saunders, S., Bright, K., Benjamin, P. R. & Burke, J. F. (1990). Cardioactive neuropeptide Phe-Met-Arg-Phe-NH2 (FMRFamide) and novel related peptides are encoded in multiple copies by a single gene in the snail Lymnaea stagnalis. Journal of Neuroscience 10, 412–19.CrossRefGoogle ScholarPubMed
Lutz, E. M., Lesser, W., MacDonald, M. & Sommerville, J. (1990). Novel neuropeptides revealed by cDNAs cloned from Helix aspersa nervous system. Society of Neuroscience Abstracts 16, 549.Google Scholar
McIntire, S. & Horvitz, R. (1985). Immunocytochemical reactivity of neurons in wildtype and mutant C. elegans to antisera against GABA, serotonin, and CCK. Society of Neuroscience Abstracts 11, 920.Google Scholar
Marder, E., Calabrese, R. L., Nusbaum, M. P. & Trimmer, B. A. (1987). Distribution and partial characterization of FMRFamide-like peptides in the stomatogastric ganglion of the rock crab, Cancer borealis and the spiny lobster, Panulirus interruptus. Journal of Comparative Neurology 259, 150–63.CrossRefGoogle ScholarPubMed
Nachman, R. J., Holman, G. M., Cooke, B. J., Haddon, W. F. & Ling, N. (1986 a). Leucosulfakinin-II, a blocked sulfated insect neuropeptide with homology to cholecystokinin and gastrin. Biochemical and Biophysical Research Communications 140, 357–64.CrossRefGoogle ScholarPubMed
Nachman, R. J., Holman, G. M., Haddon, W. F. & Ling, N. (1986 b). Leucosulfakinin, a sulfated insect neuropeptide with homology to gastrin and cholecystokinin. Science 234, 71–3.CrossRefGoogle ScholarPubMed
Nambu, J. R., Taussig, R., Mahon, A. C. & Scheller, R. J. (1983). Gene isolation with cDNA probes from identified Aplysia neurons: neuropeptide modulators of cardiovascular physiology. Cell 35, 4756.CrossRefGoogle ScholarPubMed
Nambu, J. R., Murphy-Erdosch, C., Andrews, P. C., Feistner, G. J. & Scheller, R. J. (1988). Isolation and characterization of a Drosophila neuropeptide gene. Neuron 1, 5561.CrossRefGoogle ScholarPubMed
Nakanishi, S., Inoue, A., Kita, T., Nakamura, M., Chang, A. C., Cohen, S. N. & Numa, S. (1979). Nucleotide sequence of cloned cDNA for bovine corticotropin-B-lipotropin precursor. Nature, London 278, 423–7.CrossRefGoogle ScholarPubMed
Nawa, H., Kotani, H. & Nakanishi, S. (1984). Tissue-specific generation of two preprotachykinin mRNAs from one gene by alternative RNA splicing. Nature, London 312, 729–34.CrossRefGoogle ScholarPubMed
O'Shea, M. & Schaffer, M. (1985). Neuropeptide function: the invertebrate contribution. Annual Review of Neuroscience 8, 171–98.CrossRefGoogle ScholarPubMed
Price, D. A., Cobb, C. G., Doble, K. E., Kline, J. K. & Greenberg, M. J. (1987). Evidence for a novel FMRFamide-related heptapeptide in the pulmonate snail Siphonaria pectinata. Peptides 8, 533–8.CrossRefGoogle ScholarPubMed
Price, D. A., Cottrell, G. A., Doble, K. E., Greenberg, M. J., Jorneby, W., Lehman, H. K. & Riehm, J. P. (1985). A novel FMRFamide-related peptide in Helix: pQDPFLRFamide. Biological Bulletin 169, 256–66.CrossRefGoogle Scholar
Price, D. A. & Greenberg, M. J. (1977). The structure of a molluscan cardioexcitatory peptide. Science 197, 670–1.CrossRefGoogle Scholar
Rosenfeld, M. G., Mermod, J.-J., Amara, S. G., Swanson, L. W., Sawchenko, P. E., Rivier, J., Vale, W. W. & Evans, R. M. (1983). Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature, London 304, 129–35.CrossRefGoogle ScholarPubMed
Schaefer, M., Picciotto, M. R., Kreiner, T., Kaldany, R.-R., Taussig, R. & Scheller, R. H. (1985). Aplysia neurons express a gene encoding multiple FMRFamide neuropeptides. Cell 41, 457–67.CrossRefGoogle ScholarPubMed
Schneider, L. E. & Taghert, P. H. (1988). Isolation and characterization of a Drosophila gene that encodes multiple neuropeptides related to Phe-Met-Arg-Phe-NH2 (FMRFamide). Proceedings of the National Academy of Sciences, USA 85, 1993–7.CrossRefGoogle ScholarPubMed
Sithigorngul, P., Cowden, C., Guastella, J. & Stretton, A. O. W. (1989). Generation of monoclonal antibodies against a nematode peptide extract: another approach for identifying unknown peptides. Journal of Comparative Neurology 284, 389–97.CrossRefGoogle Scholar
Sithigorngul, P., Stretton, A. O. W. & Cowden, C. (1990). Neuropeptide diversity in Ascaris: an immunocytochemical study. Journal of Comparative Neurology 294, 362–76.CrossRefGoogle ScholarPubMed
Stretton, A. O. W. & Johnson, C. D. (1985). GABA and 5HT immunoreactive neurons in Ascaris. Society of Neurosciences Abstracts 11, 626.Google Scholar
Stretton, A. O. W., Fishpool, R. M., Southgate, E., Donmoyer, J. E., Walrond, J. P., Moses, J. E. R. & Kass, I. S. (1978). Structure and physiological activity of the motorneurons of the nematode Ascaris. Proceedings of the National Academy of Sciences, USA 75, 3493–7.CrossRefGoogle Scholar
Stretton, A. O. W., Davis, R. E., Angstadt, J. D., Donmoyer, J. E. & Johnson, C. D. (1985). Neural control of behavior in Ascaris. Trends in Neurosciences 8, 294300.CrossRefGoogle Scholar
Sulston, J. E., Dew, M. & Brenner, S. (1975). Dopaminergic neurons in the nematode Caenorhabditis elegans. Journal of Comparative Neurology 163, 215–26.CrossRefGoogle ScholarPubMed
Tatemoto, K. & Mutt, V. (1981). Isolation and characterization of the intestinal peptide porcine PHI (PHI-27), a new member of the glucagon-secretin family. Proceedings of the National Academy of Sciences, USA 78, 6603–7.CrossRefGoogle ScholarPubMed
Trimmer, B. A., Kobierski, L. A. & Kravitz, E. A. (1987). Purification and characterization of FMRFamide-like substances from the lobster nervous system: isolation and sequence analysis of two closely related peptides. Journal of Comparative Neurology 266, 1626.CrossRefGoogle Scholar
Whim, M. D. & Lloyd, P. E. (1989). Frequency-dependent release of peptide cotransmitters from identified cholinergic motor neurons in Aplysia. Proceedings of the National Academy of Sciences, USA 86, 9034–8.CrossRefGoogle ScholarPubMed
White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. (1986). The structure of the nervous system of the nematode Caenorhabditis elegans. Philosophical Transactions of the Royal Society, Series B (London(Biology)) 314, 1340.Google ScholarPubMed
Yang, H.-Y. T., Fratta, W., Majane, E. A. & Costa, E. (1985). Isolation, sequencing, and pharmacological characterization of two brain peptides that modulate the action of morphine. Proceedings of the National Academy of Sciences, USA 82, 7757–61.CrossRefGoogle ScholarPubMed