Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T21:15:32.304Z Has data issue: false hasContentIssue false

Myxobolus cerebralis (Myxozoa), the causative agent of whirling disease, reduces fecundity and feeding activity of Tubifex tubifex (Oligochaeta)

Published online by Cambridge University Press:  13 March 2009

S. SHIRAKASHI
Affiliation:
Clinic for Fish and Reptiles, University of Munich, Kaulbachstraße 37, D-80539 Munich, Germany
M. EL-MATBOULI*
Affiliation:
Clinic for Fish and Reptiles, University of Munich, Kaulbachstraße 37, D-80539 Munich, Germany
*
*Corresponding author. Tel: +49 (0) 89 2180 3273. Fax: +49 (0) 89 280 5175. E-mail: el-matbouli@lmu.de

Summary

Myxobolus cerebralis is the causative agent of whirling disease that has significant economical and ecological impacts on trout populations. Although intensive studies have been conducted to understand its effects on and interactions with its fish host, only limited information is available about how and to what extent M. cerebralis affects its oligochaete host, Tubifex tubifex. We investigated the effects of M. cerebralis on survival, growth, reproduction, and feeding activity of T. tubifex. Mature, immature and juvenile worms were exposed to myxospores and their infection prevalence, mortality, sexual development, reproduction and spore production were compared with unexposed worms. The parasite affected neither survival nor growth but inhibited clitellar development and reduced cocoon production by over 80%. Numbers of actinospores released from mature worms were nearly 9-fold higher than that of immature worms. When non-clitellated infected worms were kept at 30°C for 4 days, spore release ceased and they re-developed a clitellum. These results suggest parasite-induced castration. Comparative monitoring of defecation rate revealed that M. cerebralis reduced feeding activity of T. tubifex by approximately 40%. Low energy intake and impaired energetic allocation may be the underlying mechanism behind reduced fecundity of infected T. tubifex.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andree, K. B., El-Matbouli, M., Hoffman, R. W. and Hedrick, R. P. (1999). Comparison of 18S and ITS-1 rDNA sequences of selected geographic isolates of Myxobolus cerebralis. International Journal for Parasitology 29, 771775.CrossRefGoogle ScholarPubMed
Anlauf, A. (1990). Cyst formation of Tubifex tubifex (Muller) – an adaptation to survive food deficiency and drought. Hydrobiologia 190, 7982.Google Scholar
Antonio, D. B., Andree, K. B., McDowell, T. S. and Hedrick, R. P. (1998). Defection of Myxobolus cerebralis in rainbow trout and oligochaete tissues by using a nonradioactive in situ hybridization (ISH) protocol. Journal of Aquatic Animal Health 10, 338347.2.0.CO;2>CrossRefGoogle Scholar
Arndt, R. E., Wagner, E. J., Cannon, Q. and Smith, M. (2002). Triacninomyxon production as related to rearing substrate and diel light cycle. In Whirling Disease: Reviews and Current Topics (ed. Bartholomew, J. L. and Winton, J. R.), pp. 8792. American Fisheries Society, Symposium 29, Bethesda, Maryland, USA.Google Scholar
Arsan, E. L., Hallett, S. L. and Bartholomew, J. L. (2007). Tubifex tubifex from Alaska and their susceptibility to Myxobolus cerebralis. Journal of Parasitology 93, 13321342.Google Scholar
Baerwald, M. R., Welsh, A. B., Hedrick, R. P. and May, B. (2008). Discovery of genes implicated in whirling disease infection and resistance in rainbow trout using genome-wide expression profiling. Bmc Genomics 9, 37.CrossRefGoogle ScholarPubMed
Baldwin, T. J., Peterson, J. E., McGhee, G. C., Staigmiller, K. D., Motteram, E. S., Downs, C. C. and Stanek, D. R. (1998). Distribution of Myxobolus cerebralis in salmonid fishes in Montana. Journal of Aquatic Animal Health 10, 361371.2.0.CO;2>CrossRefGoogle Scholar
Barnes, R. D. (1987). Invertebrate Zoology, 5th Edn.Saunders College Publishing, New York, NY, USA.Google Scholar
Bartholomew, J. L., Atkinson, S. D., Hallett, S. L., Lowenstine, L. J., Garner, M. M., Gardiner, C. H., Rideout, B. A., Keel, M. K. and Brown, J. D. (2008). Myxozoan parasitism in waterfowl. International Journal for Parasitology 38, 11991207.CrossRefGoogle ScholarPubMed
Bartholomew, J. L. and Reno, P. W. (2002). The history and dissemination of whirling disease. In Whirling Disease: Reviews and Current Topics (ed. Bartholomew, J. L. and Winton, J. R.), pp. 324. American Fisheries Society, Symposium 29, Bethesda, Maryland, USA.CrossRefGoogle Scholar
Baudoin, M. (1975). Host castration as a parasitic strategy. Evolution 29, 335352.CrossRefGoogle ScholarPubMed
Baxa, D. V., Kelley, G. O., Mukkatira, K. S., Beauchamp, K. A., Rasmussen, C. and Hedrick, R. P. (2008). Arrested development of the myxozoan parasite, Myxobolus cerebralis, in certain populations of mitochondrial 16S lineage III Tubifex tubifex. Parasitology Research 102, 219228.Google Scholar
Beauchamp, K. A., Gay, M., Kelley, G. O., El-Matbouli, M., Kathman, R. D., Nehring, R. B. and Hedrick, R. P. (2002). Prevalence and susceptibility of infection to Myxobolus cerebralis, and genetic differences among populations of Tubifex tubifex. Diseases of Aquatic Organisms 51, 113121.Google Scholar
Beauchamp, K. A., Kathman, R. D., McDowell, T. S. and Hedrick, R. P. (2001). Molecular phylogeny of tubificid oligochaetes with special emphasis on Tubifex tubifex (Tubificidae). Molecular Phylogenetics and Evolution 19, 216224.Google Scholar
Blazer, V. S., Waldrop, T. B., Schill, W. B., Densmore, C. L. and Smith, D. (2003). Effects of water temperature and substrate type on spore production and release in eastern Tubifex tubifex worms infected with Myxobolus cerebralis. Journal of Parasitology 89, 2126.Google Scholar
Brinkhurst, R. O. and Gelder, S. R. (1991). Annelida: oligochaeta and branchiobdellida. In Ecology and Classification of North American Freshwater Invertebrates (ed. Thorpe, J. H. and Covich, A. P.), pp. 401435. Academic Press, San Diego, CA, USA.Google Scholar
Bush, A. O., Fernández, J. C., Esch, G. W. and Seed, J. R. (Eds) (2001). Parasitism: The Diversity and Ecology of Animal Parasites. Cambridge University Press, Cambridge, UK.Google Scholar
Canning, E. U. and Okamura, B. (2004). Biodiversity and evolution of the myxozoa. Advances in Parasitology 56, 43131.Google Scholar
Canning, E. U., Tops, S., Curry, A., Wood, T. S. and Okamura, B. (2002). Ecology, development and pathogenicity of Buddenbrockia plumatellae Schröder, 1910 (Myxozoa, Malacosporea) (syn. Tetracapsula bryozoides) and establishment of Tetracapsuloides n. gen. for Tetracapsula bryosalmonae. Journal of Eukaryotic Microbiology 49, 280295.CrossRefGoogle ScholarPubMed
Chapman, P. M. and Brinkhurst, R. O. (1987). Hair today gone tomorrow: induced chaetal changes in tubificid oligochaetes. Hydrobiologia 155, 4555.CrossRefGoogle Scholar
Covich, A. P., Palmer, M. A. and Crowl, T. A. (1999). The role of benthic invertebrate species in freshwater ecosystems – Zoobenthic species influence energy flows and nutrient cycling. Bioscience 49, 119127.CrossRefGoogle Scholar
Dubey, R. and Caldwell, C. (2004). Distribution of Tubifex tubifex lineages and Myxobolus cerebralis infection in the tailwater of the San Juan River, New Mexico. Journal of Aquatic Animal Health 16, 179185.CrossRefGoogle Scholar
Dykova, I., Tyml, T., Fiala, I. and Lom, J. (2007). New data on Soricimyxum fegati (Myxozoa) including analysis of its phylogenetic position inferred from the SSU rRNA gene sequence. Folia Parasitologica 54, 272276.Google Scholar
Eiras, J. C. (2005). An overview on the myxosporean parasites in amphibians and reptiles. Acta Parasitologica 50, 267275.Google Scholar
El-Matbouli, M. and Hoffman, R. W. (1989). Experimental transmission of two. Myxobolus spp. developing bisporogeny via tubificid worms. Parasitology Research 75, 461464.CrossRefGoogle ScholarPubMed
El-Matbouli, M. and Hoffmann, R. W. (1998). Light and electron microscopic studies on the chronological development of Myxobolus cerebralis to the actinosporean stage in Tubifex tubifex. International Journal for Parasitology 28, 195217.Google Scholar
El-Matbouli, M., Hoffmann, R. W. and Mandok, C. (1995). Light and electron-microscopic observations on the route of the Triactinomyxon-sporoplasm of Myxobolus cerebralis from epidermis into rainbow trout cartilage. Journal of Fish Biology 46, 919935.Google Scholar
El-Matbouli, M., Holstein, T. W. and Hoffmann, R. W. (1998). Determination of nuclear DNA concentration in cells of Myxobolus cerebralis and triactinomyxon spores, the causative agent of whirling disease. Parasitology Research 84, 694699.CrossRefGoogle ScholarPubMed
El-Matbouli, M., McDowell, T. S., Antonio, D. B., Andree, K. B. and Hedrick, R. P. (1999). Effect of water temperature on the development, release and survival of the triactinomyxon stage of Myxobolus cerebralis in its oligochaete host. International Journal for Parasitology 29, 627641.Google Scholar
El-Matbouli, M. and Soliman, H. (2005). Development of a rapid assay for the diagnosis of Myxobolus cerebralis in fish and oligochaetes using loop-mediated isothermal amplification. Journal of Fish Diseases 28, 549557.Google Scholar
Freier, J. E. and Friedman, S. (1976). Effect of host infection with Plasmodium gallinaceum on the reproductive capacity of Aedes aegypti. Journal of Invertebrate Pathology 28, 161166.CrossRefGoogle ScholarPubMed
Friedrich, C., Ingolic, E., Freitag, B., Kastberger, G., Hohmann, V., Skofitsch, G., Neumeister, U. and Kepka, O. (2000). A myxozoan-like parasite causing xenomas in the brain of the mole, Talpa europaea L., 1758 (Vertebrata, Mammalia). Parasitology 121, 483492.CrossRefGoogle ScholarPubMed
Gilbert, M. A. and Granath, W. O. (2001). Persistent infection of Myxobolus cerebralis, the causative agent of salmonid whirling disease, in Tubifex tubifex. Journal of Parasitology 87, 101107.Google Scholar
Hallett, S. L., Atkinson, S. D. and Bartholomew, J. L. (2005). Countering morphological ambiguities: development of a PCR assay to assist the identification of Tubifex tubifex oligochaetes. Hydrobiologia 543, 305309.Google Scholar
Hedrick, R. P., El-Matbouli, M., Adkison, M. A. and MacConnell, E. (1998). Whirling disease: re-emergence among wild trout. Immunological Reviews 166, 365376.CrossRefGoogle ScholarPubMed
Hofer, B. (1903). Uber die Drehkrankheit der Regenbogenforelle. Allgemeine Fischerei Zeitschrift 28, 78.Google Scholar
Hofer, B. (1904). Handbuch der Fischkrankheiten, Verlag der Allgemeine Fischerei Zeitung, München, Germany.Google Scholar
Hurd, H. (2001). Host fecundity reduction: a strategy for damage limitation? Trends in Parasitology 17, 363368.CrossRefGoogle ScholarPubMed
Kallert, D. M., El-Matbouli, M. and Haas, W. (2005). Polar filament discharge of Myxobolus cerebralis actinospores is triggered by combined non-specific mechanical and chemical cues. Parasitology 131, 609616.CrossRefGoogle ScholarPubMed
Kallert, D. M., Ponader, S., Eszterbauer, E., El-Matbouli, M. and Haas, W. (2007). Myxozoan transmission via actinospores: new insights into mechanisms and adaptations for host invasion. Parasitology 134, 17411750.Google Scholar
Kaster, J. L. (1980). The reproductive biology of Tubifex tubifex Muller (Annelida, Tubuficidae). American Midland Naturalist 104, 364366.Google Scholar
Kaster, J. L. and Bushnell, J. H. (1981 a). Cyst formation by Tubifex tubifex (Tubificidae). Transactions of the American Microscopical Society 100, 3441.Google Scholar
Kaster, J. L. and Bushnell, J. H. (1981 b). Occurence of tests and their possibile significance in the worm Tubifex tubifex (Oligochaeta). Southwestern Naturalist 26, 307310.Google Scholar
Kaster, J. L., Klump, J. V., Meyer, J., Krezoski, J. and Smith, M. E. (1984). Comparison of defecation rates of Limnodrilus hoffmeisteri Claparède (Tubificidae) using two different methods. Hydrobiologia 111, 181184.Google Scholar
Kent, M. L., Andree, K. B., Bartholomew, J. L., El-Matbouli, M., Desser, S. S., Devlin, R. H., Feist, S. W., Hedrick, R. P., Hoffmann, R. W., Khattra, J., Hallett, S. L., Lester, R. J. G., Longshaw, M., Palenzeula, O., Siddall, M. E. and Xiao, C. X. (2001). Recent advances in our knowledge of the Myxozoa. Journal of Eukaryotic Microbiology 48, 395413.CrossRefGoogle ScholarPubMed
Kerans, B. L., Rasmussen, C., Stevens, R., Colwell, A. E. L. and Winton, J. R. (2004). Differential propagation of the metazoan parasite Myxobolus cerebralis by Limnodrilus hoffmeisteri, Ilyodrilus templetoni, and genetically distinct strains of Tubifex tubifex. Journal of Parasitology 90, 13661373.Google Scholar
Kerans, B. L., Stevens, R. I. and Lemmon, J. C. (2005). Water temperature affects a host-parasite interaction: Tubifex tubifex and Myxobolus cerebralis. Journal of Aquatic Animal Health 17, 216221.CrossRefGoogle Scholar
Lom, J. (2005). Myxozoa. In Marine Parasitology (ed. Rohde, K.), pp. 4147. CSIRO Publishing, Melbourne, Australia.Google Scholar
Lom, J. and Dykova, I. (2006). Myxozoan genera: definition and notes on taxonomy, life-cycle terminology and pathogenic species. Folia Parasitologica 53, 136.Google Scholar
Maier, W. A., Becker-Feldman, H. and Seitz, H. M. (1987). Pathology of malaria-infected mosquitoes. Parasitology Today 3, 216218.Google Scholar
Markiw, M. E. (1986). Salmonid whirling disease – dynamics of experimental production of the infective stage – the Triactinomyxon spore. Canadian Journal of Fisheries and Aquatic Sciences 43, 521526.Google Scholar
Markiw, M. E. and Wolf, K. (1983). Myxosoma cerebralis (Myxozoa, Myxosporea) etiologic agent of salmonid whirling disease requires Tubificid worm (Annelida, Oligochaeta) in its life-cycle. Journal of Protozoology 30, 561564.Google Scholar
McGeorge, J., Sommerville, C. and Wootten, R. (1997). Studies of actinosporean myxozoan stages parasitic in oligochaetes from the sediments of a hatchery where Atlantic salmon harbour Sphaerospora truttae infection. Diseases of Aquatic Organisms 30, 107119.Google Scholar
Mermillod-Blondin, F., Gerino, M., Degrange, V., Lensi, R., Chasse, J. L., Rard, M. and Des Chatelliers, M. C. (2001). Testing the functional redundancy of Limnodrilus and Tubifex (Oligochaeta, Tubificidae) in hyporheic sediments: an experimental study in microcosms. Canadian Journal of Fisheries and Aquatic Sciences 58, 17471759.Google Scholar
Nehring, R. B. and Walker, P. G. (1996). Whirling disease in the wild: The new reality in the intermountain West. Fisheries 21, 2830.Google Scholar
Poddubnaya, T. L. (1984). Parthenogenesis in Tubificidae. Hydrobiologia 115, 9799.CrossRefGoogle Scholar
Prunescu, C. C., Prunescu, P., Pucek, Z. and Lom, J. (2007). The first finding of myxosporean development from plasmodia to spores in terrestrial mammals: Soricimyxum fegati gen. et sp. n. (Myxozoa) from Sorex araneus (Soricomorpha). Folia Parasitologica 54, 159164.Google Scholar
Rasmussen, C., Zickovich, J., Winton, J. R. and Kerans, B. L. (2008). Variability in triactinomyxon production from Tubifex tubifex populations from the same mitochondrial DNA lineage infected with Myxobolus cerebralis, the causative agent of whirling disease in salmonids. Journal of Parasitology 94, 700708.CrossRefGoogle ScholarPubMed
Reynoldson, T. B. (1994). A field-test of a sediment bioassay with the oligochaete worm Tubifex tubifex (Muller, 1774). Hydrobiologia 278, 223230.Google Scholar
Rivero, A. and Ferguson, H. M. (2003). The energetic budget of Anopheles stephensi infected with Plasmodium chabaudi: is energy depletion a mechanism for virulence? Proceedings of the Royal Society of London, Series B 270, 13651371.CrossRefGoogle ScholarPubMed
Rodriguez, P., Arrate, J., Martinez-Madrid, M., Reynoldson, T. B., Schumacher, V. and Viguri, J. (2006). Toxicity of Santander Bay sediments to the euryhaline freshwater oligochaete Limnodrilus hoffmeisteri. Hydrobiologia 564, 157169.Google Scholar
Rognlie, N. C. and Knapp, S. E. (1998). Myxobolus cerebralis in Tubifex tubifex from a whirling disease epizootic in Montana. Journal of Parasitology 84, 711713.Google Scholar
Schaperclaus, W. (1931). XXI. Die Drehkrankheit in der Forellenzucht und ihre Bekampfung. Zeitschrift für Fischerei 29, 521567.Google Scholar
Steinbach-Elwell, L. C. S., Kerans, B. L., Rasmussen, C. and Winton, J. R. (2006). Interactions among two strains of Tubifex tubifex (Oligochaeta: Tubificidae) and Myxobolus cerebralis (Myxozoa). Diseases of Aquatic Organisms 68, 131139.Google Scholar
Stevens, R., Kerans, B. L., Lemmon, J. C. and Rasmussen, C. (2001). The effects of Myxobolus cerebralis myxospore dose on triactinomyxon production and biology of Tubifex tubifex from two geographic regions. Journal of Parasitology 87, 315321.Google Scholar
Sturmbauer, C., Opadiya, G. B., Niederstatter, H., Riedmann, A. and Dallinger, R. (1999). Mitochondrial DNA reveals cryptic oligochaete species differing in cadmium resistance. Molecular Biology and Evolution 16, 967974.Google Scholar
Thomas, F., Guegan, J. F. and Renaud, F.(Eds)(2005). Parasitism and Ecosystems. Oxford University Press, Oxford, UK.Google Scholar
Van Baalen, M. (1998). Coevolution of recovery abilities and virulence. Proceedings of the Royal Society of London, Series B 265, 317325.CrossRefGoogle ScholarPubMed
Vincent, E. R. (1996). Whirling disease and wild trout: The Montana experience. Fisheries 21, 3233.Google Scholar
Volpers, M. and Neumann, D. (2005). Tolerance of two tubificid species (Tubifex tubifex and Limnodrilus hoffmeisteri) to hypoxic and sulfidic conditions in novel, long-term experiments. Archiv für Hydrobiologie 164, 1338.CrossRefGoogle Scholar
Wolf, K. and Markiw, M. E. (1984). Biology contravenes taxonomy in the Myxozoa – new discoveries show alternation of invertebrate and vertebrate hosts. Science 225, 14491452.Google Scholar
Wolf, K., Markiw, M. E. and Hiltunen, J. K. (1986). Salmonid whirling disease – Tubifex tubifex (Muller) identified as the essential Oligochete in the protozoan life-cycle. Journal of Fish Diseases 9, 8385.Google Scholar
Zendt, J. S. and Bergersen, E. P. (2000). Distribution and abundance of the aquatic oligochaete host Tubifex tubifex for the Salmonid whirling disease parasite Myxobolus cerebralis in the upper Colorado River basin. North American Journal of Fisheries Management 20, 502512.Google Scholar