Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T13:53:19.632Z Has data issue: false hasContentIssue false

Mouse studies on inhibitors of Plasmodium falciparum Hsp90: progress and challenges

Published online by Cambridge University Press:  28 May 2014

ABEBE GENETU BAYIH
Affiliation:
Department of Microbiology, Immunology and Infectious Diseases, Faculty of Medicine, University of Calgary, Calgary, AB T2L 2K8, Canada Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Calgary, Calgary, AB T2L 2K8, Canada
DYLAN R. PILLAI*
Affiliation:
Department of Microbiology, Immunology and Infectious Diseases, Faculty of Medicine, University of Calgary, Calgary, AB T2L 2K8, Canada Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Calgary, Calgary, AB T2L 2K8, Canada
*
* Corresponding author: University of Calgary, Diagnostic & Scientific Centre, Room 1W-416, 9-3535 Research Road NW, Calgary, AB T2L 2K8, Canada. E-mail: dylanrpillai@gmail.com

Summary

This review highlights studies conducted in murine models to evaluate the efficacy of compounds targeting Heat shock protein (Hsp) 90 of malaria. Both advances achieved and limitations that exist are highlighted.

Type
Special Issue Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Acharya, P., Kumar, R. and Tatu, U. (2007). Chaperoning a cellular upheaval in malaria: heat shock proteins in Plasmodium falciparum . Molecular and Biochemical Parasitology 153, 8594. doi: 10.1016/j.molbiopara.2007.01.009.Google Scholar
Ancolio, C., Azas, N., Mahiou, V., Ollivier, E., Di Giorgio, C., Keita, A., Timon-David, P. and Balansard, G. (2002). Antimalarial activity of extracts and alkaloids isolated from six plants used in traditional medicine in Mali and Sao Tome. Phytotherapy Research 16, 646649. doi: 10.1002/ptr.1025.CrossRefGoogle ScholarPubMed
Angulo-Barturen, I., Jimenez-Diaz, M. B., Mulet, T., Rullas, J., Herreros, E., Ferrer, S., Jimenez, E., Mendoza, A., Regadera, J., Rosenthal, P. J., Bathurst, I., Pompliano, D. L., Gomez de las Heras, F. and Gargallo-Viola, D. (2008). A murine model of falciparum-malaria by in vivo selection of competent strains in non-myelodepleted mice engrafted with human erythrocytes. PloS One 3, e2252. doi: 10.1371/journal.pone.0002252.CrossRefGoogle ScholarPubMed
Azas, N., Laurencin, N., Delmas, F., Di, G. C., Gasquet, M., Laget, M. and Timon-David, P. (2002). Synergistic in vitro antimalarial activity of plant extracts used as traditional herbal remedies in Mali. Parasitology Research 88, 165171.Google Scholar
Banumathy, G., Singh, V., Pavithra, S. R. and Tatu, U. (2003). Heat shock protein 90 function is essential for Plasmodium falciparum growth in human erythrocytes. Journal of Biological Chemistry 278, 1833618345. doi: 10.1074/jbc.M211309200.CrossRefGoogle ScholarPubMed
Beeson, J. G. and Brown, G. V. (2002). Pathogenesis of Plasmodium falciparum malaria: the roles of parasite adhesion and antigenic variation. Cellular and Molecular Life Sciences 59, 258271.CrossRefGoogle ScholarPubMed
Bonnefoy, S., Attal, G., Langsley, G., Tekaia, F. and Mercereau-Puijalon, O. (1994). Molecular characterization of the heat shock protein 90 gene of the human malaria parasite Plasmodium falciparum . Molecular and Biochemical Parasitology 67, 157170.Google Scholar
Bracher, A. and Hartl, F. U. (2006). Hsp90 structure: when two ends meet. Nature Structural and Molecular Biology 13, 478480. doi: 10.1038/nsmb0606-478.Google Scholar
ClinicalTrials.gov (2013). The first-in-human phase i trial of PU-H71 in patients with advanced malignancies. ClinicalTrials.gov.Google Scholar
Csermely, P., Schnaider, T., Soti, C., Prohaszka, Z. and Nardai, G. (1998). The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacology and Therapeutics 79, 129168.Google Scholar
DeBoer, C., Meulman, P. A., Wnuk, R. J. and Peterson, D. H. (1970). Geldanamycin, a new antibiotic. Journal of Antibiotics 23, 442447.Google Scholar
Fidock, D. A., Rosenthal, P. J., Croft, S. L., Brun, R. and Nwaka, S. (2004). Antimalarial drug discovery: efficacy models for compound screening. Nature Reviews. Drug Discovery 3, 509520. doi: 10.1038/nrd1416.Google Scholar
He, H., Zatorska, D., Kim, J., Aguirre, J., Llauger, L., She, Y., Wu, N., Immormino, R. M., Gewirth, D. T. and Chiosis, G. (2006). Identification of potent water soluble purine-scaffold inhibitors of the heat shock protein 90. Journal of Medicinal Chemistry 49, 381390. doi: 10.1021/jm0508078.CrossRefGoogle ScholarPubMed
Jhaveri, K., Taldone, T., Modi, S. and Chiosis, G. (2012). Advances in the clinical development of heat shock protein 90 (Hsp90) inhibitors in cancers. Biochimica et Biophysica Acta 1823, 742755. doi: 10.1016/j.bbamcr.2011.10.008.Google Scholar
Jimenez-Diaz, M. B., Mulet, T., Viera, S., Gomez, V., Garuti, H., Ibanez, J., Alvarez-Doval, A., Shultz, L. D., Martinez, A., Gargallo-Viola, D. and Angulo-Barturen, I. (2009). Improved murine model of malaria using Plasmodium falciparum competent strains and non-myelodepleted NOD-scid IL2Rgammanull mice engrafted with human erythrocytes. Antimicrobial Agents and Chemotherapy 53, 45334536. doi: 10.1128/AAC.00519-09.Google Scholar
Kumar, R., Musiyenko, A. and Barik, S. (2003). The heat shock protein 90 of Plasmodium falciparum and antimalarial activity of its inhibitor, geldanamycin. Malaria Journal 2, 30. doi: 10.1186/1475-2875-2-30.Google Scholar
Lindquist, S. and Craig, E. A. (1988). The heat-shock proteins. Annual Review of Genetics 22, 631677. doi: 10.1146/annurev.ge.22.120188.003215.Google Scholar
Mout, R., Xu, Z. D., Wolf, A. K., Jo Davisson, V. and Jarori, G. K. (2012). Anti-malarial activity of geldanamycin derivatives in mice infected with Plasmodium yoelii . Malaria Journal 11, 54. doi: 10.1186/1475-2875-11-54.Google Scholar
Neckers, L. and Tatu, U. (2008). Molecular chaperones in pathogen virulence: emerging new targets for therapy. Cell Host and Microbe 4, 519527. doi: 10.1016/j.chom.2008.10.011.CrossRefGoogle ScholarPubMed
Pallavi, R., Roy, N., Nageshan, R. K., Talukdar, P., Pavithra, S. R., Reddy, R., Venketesh, S., Kumar, R., Gupta, A. K., Singh, R. K., Yadav, S. C. and Tatu, U. (2010). Heat shock protein 90 as a drug target against protozoan infections: biochemical characterization of HSP90 from Plasmodium falciparum and Trypanosoma evansi and evaluation of its inhibitor as a candidate drug. Journal of Biological Chemistry 285, 3796437975. doi: 10.1074/jbc.M110.155317.Google Scholar
Peters, W., Howells, R. E., Portus, J., Robinson, B. L., Thomas, S. and Warhurst, D. C. (1977). The chemotherapy of rodent malaria, XXVII. Studies on mefloquine (WR 142,490). Annals of Tropical Medicine and Parasitology 71, 407418.Google Scholar
Peters, W., Robinson, B. L. and Ellis, D. S. (1987). The chemotherapy of rodent malaria. XLII. Halofantrine and halofantrine resistance. Annals of Tropical Medicine and Parasitology 81, 639646.CrossRefGoogle ScholarPubMed
Prodromou, C., Roe, S. M., O'Brien, R., Ladbury, J. E., Piper, P. W. and Pearl, L. H. (1997). Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90, 6575.Google Scholar
Sanni, L. A., Fonseca, L. F. and Langhorne, J. (2002). Mouse models for erythrocytic-stage malaria. Methods in Molecular Medicine 72, 5776. doi: 10.1385/1-59259-271-6:57.Google ScholarPubMed
Sasaki, K., Yasuda, H. and Onodera, K. (1979). Growth inhibition of virus transformed cells in vitro and antitumor activity in vivo of geldanamycin and its derivatives. Journal of Antibiotics 32, 849851.Google Scholar
Scheibel, T. and Buchner, J. (1998). The Hsp90 complex – a super-chaperone machine as a novel drug target. Biochemical Pharmacology 56, 675682.Google Scholar
Shahinas, D., Liang, M., Datti, A. and Pillai, D. R. (2010). A repurposing strategy identifies novel synergistic inhibitors of Plasmodium falciparum heat shock protein 90. Journal of Medicinal Chemistry 53, 35523557. doi: 10.1021/jm901796s.Google Scholar
Shahinas, D., Macmullin, G., Benedict, C., Crandall, I. and Pillai, D. R. (2012). Harmine is a potent antimalarial targeting Hsp90 and synergizes with chloroquine and artemisinin. Antimicrobial Agents and Chemotherapy 56, 42074213. doi: 10.1128/AAC.00328-12.CrossRefGoogle ScholarPubMed
Shahinas, D., Folefoc, A., Taldone, T., Chiosis, G., Crandall, I. and Pillai, D. R. (2013). A purine analog synergizes with chloroquine (CQ) by targeting Plasmodium falciparum Hsp90 (PfHsp90). PloS One 8, e75446. doi: 10.1371/journal.pone.0075446.Google Scholar
Shonhai, A. (2010). Plasmodial heat shock proteins: targets for chemotherapy. FEMS Immunology and Medical Microbiology 58, 6174. doi: 10.1111/j.1574-695X.2009.00639.x.CrossRefGoogle ScholarPubMed
Whitesell, L., Mimnaugh, E. G., De Costa, B., Myers, C. E. and Neckers, L. M. (1994). Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proceedings of the National Academy of Sciences USA 91, 83248328.Google Scholar
Wiech, H., Buchner, J., Zimmermann, R. and Jakob, U. (1992). Hsp90 chaperones protein folding in vitro . Nature 358, 169170. doi: 10.1038/358169a0.CrossRefGoogle ScholarPubMed
World Health Organization (2013). Malaria. In Fact Sheet, Vol. 94. World Health Organization, Geneva, Switzerland.Google Scholar