Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T17:07:44.320Z Has data issue: false hasContentIssue false

Morphological and molecular characterization of a new microsporidian (Protozoa: Microsporidia) isolated from Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae)

Published online by Cambridge University Press:  10 February 2006

S. JOHNY
Affiliation:
Laboratory of Molecular Genetics, Centre for DNA Fingerprinting and Diagnostics, ECIL Road, Nacharam, Hyderabad 500 076, India G.S. Gill Research Institute, Guru Nanak College, Chennai 600 042, India
S. KANGINAKUDRU
Affiliation:
Laboratory of Molecular Genetics, Centre for DNA Fingerprinting and Diagnostics, ECIL Road, Nacharam, Hyderabad 500 076, India
M. C. MURALIRANGAN
Affiliation:
G.S. Gill Research Institute, Guru Nanak College, Chennai 600 042, India
J. NAGARAJU
Affiliation:
Laboratory of Molecular Genetics, Centre for DNA Fingerprinting and Diagnostics, ECIL Road, Nacharam, Hyderabad 500 076, India

Abstract

A microsporidium was isolated from larvae of Spodoptera litura (Fabricius) collected from Tamil Nadu, India. This microsporidian species is monomorphic, disporous and develops in direct contact with the cytoplasm of the host cell. The nuclear configuration of merogonic and sporogonic stages was diplokaryotic. The merogonic proliferative stage was unusual that normal development with 1, 2 and 4 binucleated forms were common, while large multinucleate meronts containing 8 and 12 small compact horseshoe-like diplokaryotic nuclei were also observed. The fresh spores were typically ovocylindrical in shape, with a mean size of 3·91×1·91 μm and the polar filament length was ~90 μm. Infection was systemic with mature spores produced in the midgut, nervous tissue, muscles, labial glands, gonads, tracheae, epidermis, Malpighian tubules and, most extensively, fat body tissues. The new isolate was highly pathogenic to S. litura larvae. Host specificity tests performed on 37 non-target hosts of 5 different insect orders revealed that the new isolate is pathogenic only to lepidopteran insects. We sequenced the 16S small subunit rRNA (SSU rRNA) gene of the isolate and compared it with 72 non-redundant microsporidian sequences from the GenBank. Based on the light microscopic studies and phylogenetic analyses, the new isolate is assigned to the genus Nosema. Significant differences in the SSU rRNA sequence were identified when compared with the type species Nosema bombycis and other closely related species viz., Nosema spodopterae. Structural differences were also observed in the 16S SSU rRNA between the new isolate and the two above-mentioned microsporidian pathogens. We conclude that the microsporidian isolate reported here is distinctly different from the other known species and is likely to be a new species.

Type
Research Article
Copyright
2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abbott, W. S. ( 1925). A method for computing the effectiveness of an insecticide. Journal of Economic Entomology 18, 265267.CrossRefGoogle Scholar
Akaike, H. ( 1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control 19, 716723.CrossRefGoogle Scholar
Andreadis, T. G. ( 1987). Horizontal transmission of Nosema pyrausta (Microsporida: Nosematidae) in the European corn borer, Ostrinia nubilalis (Lepidoptera: Pyralidae). Environmental Entomology 16, 11241129.CrossRefGoogle Scholar
Andreadis, T. G., Dubois, N. R., Moore, R. E. B., Anderson, J. F. and Lewis, F. B. ( 1983). Single applications of high concentrations of Bacillus thuringiensis for control of gypsy moth (Lepidoptera: Lymantriidae) populations and their impact on parasitism and disease. Journal of Economic Entomology 76, 14171422.CrossRefGoogle Scholar
Armes, N. J., Wightman, J. A., Jadhav, D. R. and Ranga Rao, G. V. ( 1997). Status of insecticide resistance in Spodoptera litura in Andhra Pradesh, India. Pesticide Science 50, 240248.3.0.CO;2-9>CrossRefGoogle Scholar
Baker, M. D., Vossbrinck, C. R., Didier, E. S., Maddox, J. V. and Shadduck, J. A. ( 1995). Small subunit ribosomal DNA phylogeny of various microsporidia with emphasis on AIDS related forms. Journal of Eukaryotic Microbiology 42, 564570.CrossRefGoogle Scholar
Baker, M. D., Vossbrinck, C. R., Maddox, J. V. and Undeen, A. H. ( 1994). Phylogenetic relationships among Vairimorpha and Nosema species (Microspora) based on ribosomal RNA sequence data. Journal of Invertebrate Pathology 64, 100106.CrossRefGoogle Scholar
Becnel, J. J. and Andreadis, T. G. ( 1999). Microsporidia in insects. In The Microsporidia and Microsporidiosis ( ed. Wittner, M. and Weiss, L. M.), pp. 447501. American Society for Microbiology Press, Washington, D.C.CrossRef
Briano, J. A. and Williams, D. F. ( 2002). Natural occurrence and laboratory studies of the fire ant pathogen Vairimorpha invictae (Microsporida: Burenellidae) in Argentina. Environmental Entomology 31, 887894.CrossRefGoogle Scholar
Brooks, W. M. ( 1968). Transovarian transmission of Nosema heliothidis in the corn earworm, Heliothis zea. Journal of Invertebrate Pathology 11, 510512.CrossRefGoogle Scholar
Campbell, R. W. and Podgwaite, J. D. ( 1971). The disease complex of the gypsy moth. I. Major components. Journal of Invertebrate Pathology 18, 101107.CrossRefGoogle Scholar
Canning, E. U., Refardt, D., Vossbrinck, C. R., Okamura, B. and Curry, A. ( 2002). New diplokaryotic microsporidia (Phylum Microsporidia) from freshwater bryozoans (Bryozoa, Phylactolaemata). European Journal of Protistology 38, 247265.CrossRefGoogle Scholar
Choi, J. Y., Kim, J. G., Choi, Y. C., Goo, T. W., Chang, J. H., Je, Y. H. and Kim, K. Y. ( 2002). Nosema sp. isolated from cabbage white butterfly (Pieris rapae) Collected in Korea. Journal of Microbiology 40, 199204.Google Scholar
Desportes, I., Le Charpentier, Y. and Galian, A. ( 1985). Occurrence of a new microsporidian: Enterocytozoon bieneusi n. g., n. sp. in the enterocytes of a human patient with AIDS. Journal of Protozoology 32, 250254.Google Scholar
Didier, E. S., Didier, P. J., Snowden, K. F. and Shadduck, J. A. ( 2000). Microsporidiosis in mammals. Microbes and Infection 2, 709720.CrossRefGoogle Scholar
Fantham, H. B. and Porter, A. ( 1958). Some pathogenic bacteriform microsporidia from Crustacea and Insecta. Proceedings of the Zoological Society of London, B 130, 153168.Google Scholar
Felsenstein, J. ( 1989). PHYLIP – Phylogeny Inference Package (Version 3.2). Cladistics 5, 164166.Google Scholar
Finney, D. J. ( 1971). Probit Analysis, 3rd Edn. Cambridge University Press, Cambridge.
Franzen, C. and Muller, A. ( 1999). Molecular techniques for detection, species differentiation, and phylogenetic analyses of microsporidia. Clinical Microbiology Reviews 12, 243285.Google Scholar
Hatakeyama, Y. and Hayasaka, S. ( 2002). Specific amplification of microspordian DNA fragments using multiprimer PCR. Japan Agricultural Research Quarterly 36, 97102.CrossRefGoogle Scholar
Haque, M. A., Canning, E. U. and Wright, D. J. ( 1999). Entomopathogenicity of Vairimorpha sp. (Microsporidia) in the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). Bulletin of Entomological Research 89, 147152.Google Scholar
Hsu, T. H., Hsu, E. L. and Yen, D. F. ( 1991). Morphogenesis of microsporidian Nosema sp. from the tobacco cutworm Spodoptera litura. Plant Protection Bulletin, Taichung 33, 395409.Google Scholar
Hsu, T. H., Hsu, E. L. and Yen, D. F. ( 1992). Nosema spodopterae n. sp. a new species of microsporidia from the tobacco cutworm Spodoptera litura. Journal of the Agricultural Association of China 157, 8190.Google Scholar
Huang, H. W., Tsai, S. J., Lo, C. F., Soichi, Y. and Wang, C. H. ( 2004). The novel organization and complete sequence of the ribosomal gene of Nosema bombycis. Fungal Genetics and Biology 41, 473481.CrossRefGoogle Scholar
Ishihara, R. ( 1969). The life cycle of Nosema bombycis as revealed in tissue culture cells of Bombyx mori. Journal of Invertebrate Pathology 14, 316320.CrossRefGoogle Scholar
Jeffords, M. R., Maddox, J. V., McManus, M. L., Webb, R. E. and Wieber, A. ( 1989). Evaluation of the overwintering success of two European microsporidia inoculatively released into gypsy moth populations in Maryland, USA. Journal of Invertebrate Pathology 53, 235240.CrossRefGoogle Scholar
Johny, S. ( 2002). Resistance to insecticides among different populations of Spodoptera litura (Fab.) (Lepidoptera: Noctuidae) and their control with a new microsporidian parasite. Ph.D. thesis, University of Madras, Chennai, India.
Johny, S. and Muralirangan, M. C. ( 2000). Monitoring susceptibility to selected insecticides in Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) in Tamil Nadu (India). Pestology 24, 3236.Google Scholar
Keeling, P. J. ( 2003). Congruent evidence from a α- tubulin and β- tubulin gene phylogenies for a zygomycete origin of microsporidia. Fungal Genetics and Biology 38, 298309.CrossRefGoogle Scholar
Keeling, P. J. and Fast, N. M. ( 2002). Microsporidia: biology and evolution of highly reduced intracellular parasites. Annual Review of Microbiology 56, 93116.CrossRefGoogle Scholar
Kellen, W. R. and Lindegren, J. E. ( 1969). Host-pathogen relationships of two previously undescribed microsporidian from the Indian-meal moth, Plodia interpunctella (Hübner), (Lepidoptera: Phycitidae). Journal of Invertebrate Pathology 14, 328335.CrossRefGoogle Scholar
Kent, M. L., Hervio, D. M., Docker, M. F. and Devlin, R. H. ( 1996). Taxonomy studies and diagnostic tests for myxosporean and microsporidian pathogens of salmonid fishes utilising ribosomal DNA sequence. Journal of Eukaryotic Microbiology 43, 98S99S.CrossRefGoogle Scholar
Kotler, D. P. and Orenstein, J. M. ( 1999). Clinical syndromes associated with microsporidiosis. In The Microsporidia and Microsporidiosis ( ed. Wittner, M. and Weiss, L. M.), pp. 258292. American Society for Microbiology Press, Washington, D.C.CrossRef
Li, S. P. and Wenn, C. S. ( 1987). Nosema liturae sp. n., a new species of microsporidia from the cotton leafworm, Spodoptera litura. Scientia Agricultura Sinica 20, 7174.Google Scholar
Lockwood, J. A., Bomar, C. R. and Ewen, A. B. ( 1999). The history of biological control with Nosema locustae: lessons for locust management. Insect Science and its Application 19, 333350.CrossRefGoogle Scholar
Molina, J. M., Goguel, J., Sarfati, C., Michiels, J. F., Desportes-Livage, I., Balkan, S., Chastang, C., Cotte, L., Maslo, C., Struxiano, A., Derouin, F. and Decazes, J. M. ( 2000). Trial of oral fumagillin for the treatment of intestinal microsporidiosis in patients with HIV infection. ANRS 054 Study Group. Agence Nationale de Recherche sur le SIDA. AIDS 14, 13411348.CrossRefGoogle Scholar
Muller, M., Bialek, R., Kamper, A., Fatkenheuer, G., Salzberger, B. and Franzen, C. ( 2001). Detection of Microsporidia in Travelers with Diarrhea. Journal of Clinical Microbiology 39, 16301632.CrossRefGoogle Scholar
Nageli, C. ( 1857) Nosema bombycis Nageli. Botanische Zeitung 15, 760761.Google Scholar
Nageswara Rao, S., Muthulakshmi, M., Kanginakudru, S. and Nagaraju, J. ( 2004). Phylogenetic relationships of three new microsporidian isolates from the silkworm, Bombyx mori. Journal of Invertebrate Pathology 86, 8795.Google Scholar
Nicholas, K. B. and Nicholas, H. B. Jr. ( 1997). GeneDoc: a tool for editing and annotating multiple sequence alignments. Distributed by the author, available at: http://www.psc.edu/biomed/genedoc
Posada, D. and Crandall, K. A. ( 1998). Modeltest: testing the model of DNA substitution. Bioinformatics 14, 817818.CrossRefGoogle Scholar
Sergei, L., Pond, S. L. K., Frost, S. D. W. and Muse, S. V. ( 2005). HyPhy: hypothesis testing using phylogenies Bioinformatics. Advance Access published on March 1, 2005, Bioinformatics 21, 676679.Google Scholar
Siegel, J., Maddox, J. V. and Ruesink, W. G. ( 1988). Seasonal progress of Nosema pyrausta in the European corn borer, Ostrinia nubilalis. Journal of Invertebrate Pathology 52, 130136.CrossRefGoogle Scholar
Slamovits, C. H., Williams, B. A. and Keeling, P. J. ( 2004). Transfer of Nosema locustae (Microsporidia) to Antonospora locustae n. comb. based on molecular and ultrastructural data. Journal of Eukaryotic Microbiology 51, 20713.Google Scholar
Sokolova, Y. Y., Issi, I. V., Morzhina, E. V., Tokarev, Y. S. and Vossbrinck, C. R. ( 2005). Ultrastructural analysis supports transferring Nosema whitei Weiser 1953 to the genus Paranosema and creation a new combination, Paranosema whitei. Journal of Invertebrate Pathology 90, 122126.CrossRefGoogle Scholar
Sokolova, Y. Y. and Lange, C. E. ( 2002). An ultrastructural study of Nosema locustae Canning (Microsporidia) from three species of acrididae (Orthoptera). Acta Protozoologica 41, 229337.Google Scholar
Solter, L. F. and Becnel, J. J. ( 2000). Entomopathogenic microsporidia. In Field Manual of Techniques for the Evaluation of Entomopathogens ( ed. Lacey, L. A. and Kaya, H.), pp. 231254. Kluwer Academic Publishers, Dordrecht, The Netherlands.CrossRef
Solter, L. F. and Maddox, J. V. ( 1998). Physiological host specificity of microsporidia as an indicator of ecological host specificity. Journal of Invertebrate Pathology 71, 207216.CrossRefGoogle Scholar
Solter, L. F., Maddox, J. V. and McManus, M. L. ( 1997). Host specificity of microsporidia (Protista: Microspora) from European populations of Lymantria dispar (Lepidoptera: Lymantriidae) to indigenous North American Lepidoptera. Journal of Invertebrate Pathology 69, 139150.CrossRefGoogle Scholar
Sprague, V. and Vernick, S. H. ( 1971). The ultrastructure of Encephalitozoon cuniculi (Microsporida: Nosematidae) and its taxonomic significance. Journal of Protozoology 18, 566569.Google Scholar
Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G. ( 1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25, 48764882.CrossRefGoogle Scholar
Tsai, S. J., Huang, W. F. and Wang, C. H. ( 2005). Complete sequence and gene organization of the Nosema spodopterae rRNA gene. Journal of Eukaryotic Microbiology 52, 5254.CrossRefGoogle Scholar
Tsai, S. J., Lo, C. F. and Wang, C. H. ( 2003). The characterization of microsporidian isolates (Nosematidae: Nosema) from five important lepidopteran pests in Taiwan. Journal of Invertebrate Pathology 83, 5159.CrossRefGoogle Scholar
Tsai, S. J. and Wang, C. H. ( 2001). Interaction of the microsporidium and nucleopolyhedrovirus in Spodoptera litura. Formosan Entomologist 21, 183195.Google Scholar
Undeen, A. H. and Cockburn, A. F. ( 1989). The extraction of DNA from microsporidia spores. Journal of Invertebrate Pathology 54, 132133.CrossRefGoogle Scholar
Undeen, A. H. and Maddox, J. V. ( 1973). The infection of nonmosquito hosts by injection with spores of the microsporidian Nosema algerae. Journal of Invertebrate Pathology 22, 258265.CrossRefGoogle Scholar
Undeen, A. H. and Vavra, J. ( 1997). Research methods for entomopathogenic protozoa. In Manual of Techniques in Insect Pathology ( ed. Lacey, L. A.), pp. 117151. Academic Press, San Diego, USA.CrossRef
Van de Peer, Y., Caers, A., De Rijk, P. and De Wachter, R. ( 1998). Database on the structure of small ribosomal subunit RNA. Nucleic Acids Research 26, 179182.CrossRefGoogle Scholar
Vossbrinck, C. R., Baker, M. D., Didier, E. S., Debrunner-Vossbrinck, B. A. and Shadduck, J. A. ( 1993). Ribosomal DNA sequences of Encephalitozoon hellem and Encephalitozoon cuniculi: species identification and phylogenetic construction. Journal of Eukaryotic Microbiology 40, 354362.CrossRefGoogle Scholar
Vossbrinck, C. R. and Debrunner-Vossbrinck, B. A. ( 2005). Molecular phylogeny of the Microsporidia: ecological, ultrastructural and taxonomic considerations. Folia Parasitologica 52, 131142.CrossRefGoogle Scholar
Watanabe, H. ( 1976). A Nosema species of the Egyptian cotton leaf worm Spodoptera litura (Lepidoptera): its morphology, development, host range, and taxonomy. Journal of Invertebrate Pathology 28, 321328.CrossRefGoogle Scholar
Weber, R., Bryan, R. T., Schwartz, D. A. and Owen, R. L. ( 1994). Human microsporidial infections. Clinical Microbiology Reviews 7, 426461.CrossRefGoogle Scholar
Weiss, L. M. and Vossbrinck, C. R. ( 1999). Molecular biology, molecular phylogeny, and molecular diagnostic approaches to the Microsporidia. In The Microsporidia and Microsporidiosis ( ed. Wittner, M. and Weiss, L. M.), pp. 129171. American Society for Microbiology Press, Washington, D.C.CrossRef
Wittner, M. and Weiss, L. M. ( 1999). The Microsporidia and Microsporidiosis. American Society for Microbiology Press, Washington, D.C.
Zuker, M. ( 2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research 31, 34063415.CrossRefGoogle Scholar