Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T21:26:13.760Z Has data issue: false hasContentIssue false

Mannosyl transferase activity in homogenates of adult Schistosoma mansoni

Published online by Cambridge University Press:  06 April 2009

F. D. Rumjanek
Affiliation:
Division of Parasitology, National Institute for Medical Research, Mill Hill, London NW7 1AA
S. R. Smithers
Affiliation:
Division of Parasitology, National Institute for Medical Research, Mill Hill, London NW7 1AA

Summary

Homogenates of adult Schistosoma mansoni contain enzymes which are capable of transferring [14C]mannose from GDP[U-14C]mannose to a lipid acceptor which migrates as a single peak on a silica gel thin-layer plate. This lipid may belong to the class of polyprenol monophosphates which are intermediate elements in the glycosylation of nascent proteins. The schistosome mannosyl transferase activity is associated with membranous particles and is dependent on the presence of Mn2+. However, other divalent metals such as Mg2+ or Ca2+ can, in decreasing order of efficiency, replace Mn2+. When UDP[U-14C]glucose was incubated with the homogenates in the same conditions, relatively little label was transferred to the lipid acceptor. Live worms incubated in a medium containing GDP[U-14C]mannose seem to incorporate the label preferentially on the tegument and on adjacent subtegumental structures. By adding foetal calf serum to the medium, incorporation of the label can be stimulated.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Caccam, J., Jackson, J. J. & Eylar, E. H. (1969). The biosynthesis of mannose-containing glycoproteins: a possible lipid intermediate. Biochemical and Biophysical Research Communications 35, 505–11.CrossRefGoogle ScholarPubMed
Clegg, J. A. (1965). In vitro cultivation of Schistosoma mansoni. Experimental Parasitology 16, 133–47.CrossRefGoogle ScholarPubMed
Gregoriadis, G. (1975). The catabolism of glycoproteins. In Lysosomes in Biology and Pathology, vol. 4 (ed. Dingle, J. T. and Dean, R. T.), pp. 265–94. Amsterdam: North Holland Publishing Company.Google Scholar
Heifetz, A. & Elbein, A. D. (1977). Solubilization and properties of mannose and N-acetyl-glucosamine transferases involved in the formation of polyprenol-sugar intermediates. Journal of Biological Chemistry 252, 3057–03.CrossRefGoogle ScholarPubMed
Hemming, F. W. (1977). Dolichol phosphate, a coenzyme in the glycosylation of animal membrane-bound glycoproteins. Biochemical Society Transactions 5, 1223–31.CrossRefGoogle ScholarPubMed
Higashi, Y., Strominger, J. L. & Sweeley, C. C. (1967). Structure of a lipid intermediate in cell wall peptidogylcan synthesis: a derivative of a C55 isoprenoid alcohol. Proceedings of the National Academy of Sciences, N.Y. 57, 1878–84.CrossRefGoogle Scholar
Hughes, R. C. (1976). Membrane Glycoproteins: A Review of Structure and Function. London and Boston: Butterworths.Google Scholar
Kusel, J. R. (1972). Protein composition and protein synthesis in the surface membranes of Schistosoma mansoni. Parasitology 65, 55–9.CrossRefGoogle ScholarPubMed
Kusel, J. R. & Mackenzie, P. E. (1975). The measurement of the relative turnover rates of proteins of the surface membranes and other fractions of Schistosoma mansoni in culture. Parasitology 71, 261–73.CrossRefGoogle ScholarPubMed
Lowry, O., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry 193, 265–75.CrossRefGoogle ScholarPubMed
Pan, Y.-T. & Kindel, P. K. (1977). Characterization of particulate D-apiosyl- and D-xylosyl transferase from Lemma minor. Archives of Biochemistry and Biophysics 183, 131–8.CrossRefGoogle Scholar
Perez, H. & Terry, R. J. (1973). The killing of adult Schistosoma mansoni in vitro in the presence of antisera to host antigenic determinants and peritoneal cells. International Journal for Parasitology 3, 499503.CrossRefGoogle ScholarPubMed
Richards, J. B. & Hemming, F. W. (1972). The transfer of mannose from guanosine diphosphate mannose to dolichol phosphate and protein by pig liver endoplasmic reticulum. The Biochemical Journal 130, 7793.CrossRefGoogle ScholarPubMed
Smithers, S. R. & Terry, R. J. (1965). The infection of laboratory hosts with cercariae of Schistosoma mansoni and the recovery of the adult worms. Parasitology 55, 695700.CrossRefGoogle ScholarPubMed
Smithers, S., Terry, R. J. & Hockley, D. J. (1969). Host antigens in schistosomiasis. Proceedings of the Royal Society of London, B 171, 483–94.Google ScholarPubMed
Waechter, C. J., Kennedy, J. L. & Harford, J. B. (1976). Lipid intermediates involved in the assembly of membrane-associated glycoprotoins in calf brain white matter. Archives of Biochemistry and Biophysics 174, 726–37.CrossRefGoogle ScholarPubMed
Waechter, C. J. & Lennarz, W. J. (1976). The role of polyprenol-linked sugars in glycoprotein synthesis. Annual Review of Biochemistry 45, 95112.CrossRefGoogle ScholarPubMed
Wilson, R. A. & Barnes, P. E. (1977). The formation and turnover of the membranocalyx on the tegument of Schistosoma mansoni. Parasitology 74, 6171.CrossRefGoogle ScholarPubMed
Wright, A., Dankert, M., Fennessey, P. & Robbins, P. W. (1967). Characterization of a polyisoprenoid compound functional in O-antigen biosynthesis. Proceedings of the National Academy of Sciences, N.Y. 57, 17981803.CrossRefGoogle ScholarPubMed