Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T20:41:56.025Z Has data issue: false hasContentIssue false

A major Litomosoides carinii microfilarial sheath glycoprotein (gp22): amino terminal sequence and immunological studies with corresponding synthetic peptides

Published online by Cambridge University Press:  06 April 2009

G. Bardehle
Affiliation:
Biochemisches Institut am Klinikum
F. J. Conraths
Affiliation:
Institut für Parasitologie der Justus-Liebig-Universität, Gieβen
F. Fahrenholz
Affiliation:
Max-Planck-Institut für Biophysik, Frankfurt
M. Hintz
Affiliation:
Biochemisches Institut am Klinikum
D. Linder
Affiliation:
Biochemisches Institut am Klinikum
G. Schares
Affiliation:
Institut für Parasitologie der Justus-Liebig-Universität, Gieβen
H.-H. Schott
Affiliation:
Biochemisches Institut am Klinikum
B. Schützle
Affiliation:
Max-Planck-Institut für Biophysik, Frankfurt
S. Stirm
Affiliation:
Biochemisches Institut am Klinikum
W. Stüber
Affiliation:
Behringwerke AG, Marburg/L
H. Zahner
Affiliation:
Institut für Parasitologie der Justus-Liebig-Universität, Gieβen

Extract

The major glycoprotein of the sheath of Litomosoides carinii microfilariae (gp22) was analysed for its amino acid and amino sugar composition. It is rich in proline, glutamine/glutamic acid and glycine and contains (N-acetyl)galactosamine. The N-terminal amino acid sequence was determined up to position 37. It consists of a group of 6 repeats of the pentapeptide sequence methionine-glycine-proline-glutamine-proline with two minor modifications in repeats 3–6, while the first two repeats follow the general pattern more loosely. Identical N-terminal amino acid sequences were found in at least two other sheath polypeptides (33 kDa, 39 kDa). Antisera prepared against 3 overlapping synthetic peptides corresponding to the amino terminus of gp22 recognized different epitopes. They all reacted with identical patterns of sheath polypeptides. The antisera failed to recognize antigens of 4th-stage larvae of L. carinii. In contrast, cross-reacting epitopes were detected in other parasite stages. Antisera reacted with material surrounding embryos and microfilariae in the uterus of females, and caused patchy fluorescence on the sheath of blood-derived and in vitro-released microfilariae.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bardehle, G., Klonisch, TH., Schott, H.-H., Stirm, S. & Zahner, H. (1987). Isolation of pure sheaths of Litomosoides carinii microfilariae. Parasitology Research 74, 188–90.CrossRefGoogle ScholarPubMed
Betner, I. & Földi, P. (1988). The FMOC-ADAM approach to amino acid analysis. LC-GC International 2, 4453.Google Scholar
Bertram, D. S. (1966). Dynamics of parasitic equilibrium in cotton rat filariasis. Advances in Parasitology 4, 255319.CrossRefGoogle ScholarPubMed
Breipohl, G., Knolle, J. & Stüber, W. (1989). Synthesis and application of acid labile anchor groups for the synthesis of peptide amides by Fmoc-solid-phase peptide synthesis. International Journal for Peptide Research 34, 262–7.CrossRefGoogle ScholarPubMed
Breipohl, G., Knolle, J. & Stüber, W. (1990). Facile SPS of peptides having C-terminal Asu and Glu. International Journal for Peptide Research 35, 281–3.CrossRefGoogle Scholar
Einarsson, S., Josefsson, B. & Lagerkvist, S. (1983). Determination of amino acids with 9-fluorenylmethyl chloroformate and reversed-phase high-performance liquid chromatography. Journal of Chromatography 282, 609–18.CrossRefGoogle Scholar
Hancock, K. & Tsang, V. C. W. (1983). India ink staining of proteins on nitrocellulose paper. Analytical Biochemistry 133, 157–62.CrossRefGoogle ScholarPubMed
Hewick, R. M., Hunkapiller, M. W., Hood, L. E. & Dreger, W. J. (1981). A gas-liquid solid phase peptide and protein sequencer. Journal of Biological Chemistry 256, 7990–7.CrossRefGoogle Scholar
Klonisch, TH., Bardehle, G., Linder, D., Boschek, B., Schott, H.-H., Zahner, H. & Stirm, S. (1991). The sheath of Brugia microfilariae: isolation and composition. Parasitology Research (in the Press).CrossRefGoogle ScholarPubMed
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227, 680–5.CrossRefGoogle ScholarPubMed
Lee, K. S. & Drescher, D. G. (1978). Fluorometric amino acid analysis with o-phthaldialdehyde(oPA). International Journal of Biochemistry 9, 457–67.CrossRefGoogle ScholarPubMed
Manderscheid, R., Bender, J., Weigel, H. J. & JäGer, H. J. (1991). Low doses of ozone affect nitrogen metabolism in bush bean (Phaseolus vulgaris L.) leaves. Biochemie und Physiologie der Pflanzen (in the Press).CrossRefGoogle Scholar
Matsudaira, D. (1987). Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. Journal of Biological Chemistry 262, 10035–8.CrossRefGoogle ScholarPubMed
Schlesinger, D. H. & Hay, D. I. (1977). Complete covalent structure of statherin, a tyrosine-rich acidic peptide which inhibits calcium phosphate precipitation from human parotid saliva. Journal of Biological Chemistry 252, 1689–95.CrossRefGoogle ScholarPubMed
Schraermeyer, U., Peters, W. & Zahner, H. (1987). Formation by the uterus of a peripheral layer of the sheath in microfilariae of Litomosoides carinii and Brugia malayi. Parasitology Research 73, 557–64.CrossRefGoogle ScholarPubMed
Spackman, D. H., Stein, W. H. & Moore, S. (1958). Automatic recording apparatus for the use in the chromatography of amino acids. Analytical Biochemistry 30, 1190–206.Google Scholar
Szewczyk, B. & Summers, D. F. (1988). Preparative elution of proteins blotted to immobilon membranes. Analytical Biochemistry 168, 4853.CrossRefGoogle ScholarPubMed
Tandon, A., Zahner, H., Sänger, I., Müller, A.-H. & Reiner, G. (1983). Time courses of antibody levels in Mastomys natalensis after infections with Litomosoides carinii, Dipetalonema viteae, Brugia malayi or B. pahangi, determined by ELISA. Zeitschrift für Parasitenkunde 69, 681–92.CrossRefGoogle ScholarPubMed
Wegerhof, P. H., Lämmler, G., Sänger, I. & Zahner, H. (1979). Chemotherapeutic studies on Litomosoides carinii infection of Mastomys natalensis. 8. The action of furazolidone on adult worms and microfilariae. Tropenmedizin und Parasitologie 30, 376–82.Google ScholarPubMed