Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T01:18:12.808Z Has data issue: false hasContentIssue false

Leishmania major: detection of membrane-bound protein tyrosine phosphatase

Published online by Cambridge University Press:  05 January 2006

M. M. AGUIRRE-GARCÍA
Affiliation:
Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, México, D.F., México
A. R. ESCALONA-MONTAÑO
Affiliation:
Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, México, D.F., México
N. BAKALARA
Affiliation:
Laboratoire de Genomique Fonctionelle des Trypanosomatides, UMR CNRS 5162, 146 rue Leo Saignat, 33076 Bordeaux, France
A. PÉREZ-TORRES
Affiliation:
Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, México, D.F., México
L. GUTIÉRREZ-KOBEH
Affiliation:
Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, México, D.F., México
I. BECKER
Affiliation:
Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, México, D.F., México

Abstract

PTPases have been reported as a virulence factor in different pathogens. Recent studies suggest that PTPases play a role in the pathogenesis of Leishmania infections through activation of macrophage PTPases by the parasite. We report here the presence of a membrane-bound PTPase in Leishmania major promastigotes. We detected differences in the PTPases present in the procyclic and metacyclic stages of promastigotes. In metacyclic promastigotes, the PTPase activity was totally inhibited by specific PTPase and serine/threonine inhibitors, whereas in procyclic promastigotes the PTPase activity was inhibited only with PTPase inhibitors. Two antibodies against the catalytic domains of the human placental PTPase1B and a PTPase from Trypanosoma brucei cross-reacted with a 55–60 kDa molecule present in the soluble detergent-extracted fraction of a Leishmania homogenate. Metacyclic promastigotes expressed more of this molecule than parasites in the procyclic stage. Yet the specific activity of the enzyme was lower in metacyclic than in procyclic promastigotes. Ultrastructural localization of the enzyme showed that it was more membrane-associated in metacyclic promastigotes, whereas in procyclic promastigotes it was scattered throughout the cytoplasm. This is the first demonstration of a PTPase present in Leishmania major promastigotes that differs in expression, activity and ultrastructural localization between the procyclic and metacyclic stages of the parasite's life-cycle.

Type
Research Article
Copyright
2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aguirre-García, M. M., Cerbon, J. and Talamás-Rohana, P. ( 2000). Purification and properties of an acid phosphatase from Entamoeba histolytica HM-1[ratio ]IMSS. International Journal for Parasitology 30, 585591.CrossRefGoogle Scholar
Aguirre-García, M. M., Anaya-Ruiz, M. and Talamás-Rohana, P. ( 2003). Membrane-bound acid phosphatase (MAP) from Entamoeba histolytica has phosphotyrosine phosphatase activity and disrupts the actin cytoskeleton of host cells. Parasitology 126, 195202.CrossRefGoogle Scholar
Andersson, K., Caballeira, N., Magnusson, K., Persson, C., Stendahl, O., Wolf-Watz, H. and Fallman, M. ( 1996). Yop H of Yersinia pseudotuberculosis interrupts early phosphotyrosine signalling associated with phagocytosis. Molecular Microbiology 20, 10571069.CrossRefGoogle Scholar
Ansai, T., Awano, S., Chen, X., Fuchi, T., Arimoto, T., Akifusa, S. and Takehara, T. ( 1998). Purification and characterization of alkaline phosphatase containing phosphotyrosyl phosphatase activity from bacterium Prevotella intermedia. FEBS Letters 428, 157160.CrossRefGoogle Scholar
Baca, O., Roman, M., Glew, R., Christner, R., Buhler, J. and Aragon, A. ( 1993). Acid phosphatase activity in Coxiella burnetii: a possible virulence factor. Infection and Immunity 61, 42324239.Google Scholar
Bakalara, N., Seyfang, A., Baltz, T. and Davis, CH. ( 1995). Trypanosoma brucei and Trypanosoma cruzi: life cycle-regulated protein tyrosine phosphatase activity. Experimental Parasitology 81, 302312.CrossRefGoogle Scholar
Bakalara, N., Santarelli, X., Davis, CH. and Baltz, T. ( 2000). Purification, cloning and characterization of an Acidic Ectoprotein phosphatase diferentially expressed in the infectious bloodstream form of Trypanosoma brucei. The Journal of Biological Chemistry 275, 88638871.CrossRefGoogle Scholar
Banerjee, C., Sarkar, D. and Bhaduri, A. ( 1999). Ca2+ and calmodulin-dependent protein phosphatase from Leishmania donovani. Parasitology 118, 567573.CrossRefGoogle Scholar
Becker, I., Salaiza, N., Aguirre, M., Delgado, J., Carrillo-Carrasco, N., Gutiérrez, L., Ruiz, A., Cervantes, R., Pérez, A., Cabrera, N., González, A., Maldonado, C. and Isibasi, A. ( 2003). Leishmania lipophosphoglycan (LPG) activates NK cells through toll-like receptor-2. Molecular and Biochemical Parasitology 130, 6574.CrossRefGoogle Scholar
Blanchette, J., Racette, N., Faure, R., Siminovitch, K. and Olivier, M. ( 1999). Leishmania-induced increases in activation of macrophage SHP-1 tyrosine phosphatase are associated with impaired IFN-γ-triggered JAK2 activation. European Journal of Immunology 29, 37373744.3.0.CO;2-S>CrossRefGoogle Scholar
Bliska, J. B. and Black, D. S. ( 1995). Inhibition of the Fc receptor-mediated oxidative burst in macrophages by the Yersinia pseudotuberculosis tyrosine phosphatase. Infection and Immunity 63, 681685.Google Scholar
Bozzola, J. J. and Russell L. D. ( 1998). Immunocytochemistry. In Electron Microscopy. Principles and Techniques for Biologists. 9, 263280. Jones and Bartlett Publishers, Inc.USA.
Bradford, M. M. ( 1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248254.CrossRefGoogle Scholar
Cool, D. E. and Blum, J. J. ( 1993). Protein tyrosine phosphatase activity in Leishmania donovani. Molecular and Cellular Biochemistry 127/128, 143149.CrossRefGoogle Scholar
DeVinney, R., Steele-Mortimer, O. and Finlay, B. B. ( 2000). Phosphatases and kinases delivered to the host cell by bacterial pathogens. Trends in Microbiology 8, 2933.CrossRefGoogle Scholar
Dissing, J., Dahl, O. and Svensmark, O. ( 1979). Phosphoric and arsenic acid as inhibitors of human red cell acid phosphatase and their use in affinity chromatography. Biochimica et Biophysica Acta 569, 159176.CrossRefGoogle Scholar
Fauman, E. B. and Saper, M. A. ( 1996). Structure and function of the protein tyrosine phosphatases. Trends in Biochemical Sciences 21, 413417.CrossRefGoogle Scholar
Forget, G., Siminovitch, K., Brochu, S., Rivest, S., Radzioch, D. and Olivier M. ( 2001). Role of host phosphotyrosine phosphatase SHP-1 in the development of murine leishmaniasis. European Journal Immunology 31, 31853196.3.0.CO;2-J>CrossRefGoogle Scholar
Fu, Y. and Galan, J. ( 1998). The Salmonella typhimurium tyrosine phosphatase SptP is translocated into host cells and disrupts the actin cytoskeleton. Molecular Microbiology 27, 359368.CrossRefGoogle Scholar
Fukami, Y. and Lipmann, F. ( 1982). Purification of specific reversible tyrosine-O-phosphate phosphatase. Proceedings of the National Academy of Sciences, USA 79, 42754279.CrossRefGoogle Scholar
Ghosh, D. and Chakraborty, P. ( 2002). Involvement of protein tyrosine kinases and phosphatases in uptake and intracellular replication of virulent and avirulent Leishmania donovani promastigotes in mouse macrophage cells. Bioscience Reports 22, 395406.CrossRefGoogle Scholar
Green, S., Hartland, E. L., Robins-Browne, R. M. and Phillips, W. A. ( 1995). Role of YopH in the suppression of tyrosine phosphorylation and respiratory burst activity in murine macrophages infected with Yersinia enterocolitica. Journal of Leukocyte Biology 57, 972977.CrossRefGoogle Scholar
Guan, K. and Dixon, J. ( 1990). Protein tyrosine phosphatase activity of an essential virulence determinant in Yersinia. Science 249, 553556.CrossRefGoogle Scholar
Hamid, N., Gustavsson, A., Andersson, K., McGee, K., Persson, C., Rudd, C. E. and Fallman, M. ( 1999). YopH dephosphorylates Cas and Fyn-binding protein in macrophages. Microbial Pathogenesis 26, 231242.CrossRefGoogle Scholar
Hardie, D. G. ( 1993). Use of protein phosphatase inhibitors in intact cells. In Protein Phosphorylation: A Practical Approach (ed. Hardie, D. G.), pp. 109119. IRL Press, Oxford.
Nandan, D., Lo, R. and Reiner, N. ( 1999). Activation of phosphotyrosine phosphatase activity attenuates mitogen-activated protein kinase signaling and inhibits c-FOS and nitric oxide synthase expression in macrophages infected with Leishmania donovani. Infection and Immunity 67, 40554063.Google Scholar
Nascimiento, M., Abourjeily, N., Ghosh, A., Zhang, W. and Matlashewski, G. ( 2003). Heterologous expression of a mammalian protein tyrosine phosphatase gene in Leishmania: effect on differentiation. Molecular Microbiology 50, 15171526.CrossRefGoogle Scholar
Sacks, D. L., Hieny, S. and Sher, A. ( 1985). Identification of cell surface carbohydrate and antigenic changes between non-infective and infective developmental stages of Leishmania major promastigotes. Journal of Immunology 135, 564569.Google Scholar
Sambrook, J., Fritsch, E. and Maniatis, T. ( 1989). Molecular Cloning: A Laboratory Manual2nd Edn., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
Schmid, B., Wimmer, M., Tag, C., Hoffmann, R. and Hofer, H. W. ( 1996). Protein phosphotyrosine phosphatases in Ascaris suum muscle. Molecular and Biochemical Parasitology 77, 183192.CrossRefGoogle Scholar
Tonks, N. K. ( 2003). PTP1B: From the sidelines to the front lines! FEBS letters 546, 140148.Google Scholar
Varndell, I. M., Tapia, F. J., De Mey, J., Rush, R. A., Bloom, S. R. and Polak, J. M. ( 1982). Electron inmunocytochemical localization of enkephalin-like material in catecholamine-containing cells of the carotid body, the adrenal medulla, and in pheochromocytomas of man and other mammals. Journal of Histochemistry and Cytochemistry 30, 682690.CrossRefGoogle Scholar
Zhang, Z. Y. and Dixon, J. E. ( 1994). Protein tyrosine phosphatases: mechanism of catalysis and substrate specificity. In Advances in Enzymology (ed. Meister, A.) 68, 136. John Wiley and Sons, New York.CrossRef
Zhang, Z.-Y. and Van Etten, R. L. ( 1990). Purification and characterization of a low-molecular-weight acid phosphatase – a phosphotyrosyl-protein phosphatase from bovine heart. Archives of Biochemistry 282, 3949.CrossRefGoogle Scholar