Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T14:36:11.376Z Has data issue: false hasContentIssue false

Influence of variation in host strain and parasite isolate on inflammatory and antibody responses to Trichinella spiralis in mice

Published online by Cambridge University Press:  06 April 2009

P. K. Goyal
Affiliation:
MRC Experimental Parasitology Group, Department of Life Science, University of Nottingham, Nottingham NG7 2RD
D. Wakelin*
Affiliation:
MRC Experimental Parasitology Group, Department of Life Science, University of Nottingham, Nottingham NG7 2RD
*
*Reprint requests to Professor D. Wakelin.

Summary

Variation in the immunogenicity of 3 isolates of Trichinella spiralis was assessed by the parameters of adult worm recovery, mast cell, eosinophil and antibody responses in mice of defined response phenotype. The levels of the protective, inflammatory and immune responses induced by infection differed between the isolates. Isolates showed considerable variation in the capacity to elicit mast cell and eosinophil responses. All induced increases in parasite-specific antibody, levels of total (IgGAM) antibody and of IgM and IgG isotypes rose steadily after infection, but there were significant differences in levels of response. The IgGAM response was correlated with the number of worms present, i.e. the greatest response was seen in low responder (C57BL/10) mice infected with the longest-surviving isolates. All isolates elicited specific IgG1 and IgG2a antibodies after infection, although, again, there were isolate-specific differences in the levels and kinetics of response. Levels of these isotypes were always higher, although not significantly so, in high-responder NIH mice. Low-responder mice showed higher IgE serum levels than high-responder mice after infection, one isolate giving much higher IgE values than the other two.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alizadeh, H. & Wakelin, D. (1982). Genetic factors controlling the intestinal mast cell response in mice infected with Trichinella spiralis. Clinical and Experimental Immunology 49, 331–7.Google ScholarPubMed
Baczon, K., Hadas, H. & Szelag, K. (1978). Enzymcs and protein patterns of Trichinella spiralis and Trichinella pseudospiralis larvae. In Proceedings of the Fourth International Conference on Trichinosis (ed. Kim, C. W. & Pawloswki, Z. S.), pp. 101–11. Poznan, Poland: University Press of New England.Google Scholar
Barth, W. F., McLaughlin, C. A. & Fahey, J. L. (1965). The immunoglobulins of mice. VI. Response to immunization. Journal of Immunology 95, 7890.Google ScholarPubMed
Bolas-Fernandez, F. & Wakelin, D. (1989). Infectivity of Trichinella isolates in mice is determined by host immune responsiveness. Parasitology 99, 83–8.CrossRefGoogle ScholarPubMed
Bolas-Fernandez, F. & Wakelin, D. (1990). Infectivity, antigenicity and host responses to isolates of the genus Trichinella. Parasitology 100, 491–7.CrossRefGoogle ScholarPubMed
Chambers, A. E., Almond, N., Simpson, A. J. G. & Parkhouse, R. M. E. (1985). Identification of Trichinella variants by DNA analysis. Transactions of the Royal Society of Tropical Medicine and Hygiene 79, 728.Google Scholar
Else, K. J. & Wakelin, D. (1989). Genetic variation in the humoral immune responses of mice to nematode. Trichuris muris. Parasitology 11, 790.Google ScholarPubMed
Flockhart, H. A., Harrison, S. E., Dobinson, E. R. & James, E. R. (1982). Enzyme polymorphism in Trichinella. Transactions of the Royal Society of Tropical Medicine and Hygiene 76, 541–5.CrossRefGoogle ScholarPubMed
Fukumoto, S., Takechi, M., Kamo, H. & Yamaguchi, T. (1987). Comparative studies on soluble protein profiles and isoenzyme patterns of seven Trichinella isolates. Parasitology Research 73, 3557.CrossRefGoogle ScholarPubMed
Gamble, H. R. & Murrell, K. D. (1986). Conservation of diagnostic antigen epitopes among biologically diverse isolates of Trichinella spiralis. Journal of Parasitology 72, 921–5.CrossRefGoogle ScholarPubMed
Grencis, R. K., Hultner, L. & Else, K. J. (1991). Host protective immunity to Trichinella spiralis in mice: activation of Th cell subsets and lymphokine secretion in mice expressing different response phenotypes. Immunology 74, 329–32.Google ScholarPubMed
Kelly, E. A. B., Enderson, S. C., Hauda, K. M. & Wassom, D. L. (1991). IFN-y and IL-5 producing cells compartmentalize to different lymphoid organs in Trichinella spiralis infected mice. Journal of Immunology 147, 306–11.CrossRefGoogle Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193, 265–75.CrossRefGoogle ScholarPubMed
Mydynski, L. J. & Dick, T. A. (1985). The use of enzyme polymorphisms to identify genetic differences in the genus Trichinella. Journal of Parasitology 71, 671–7.CrossRefGoogle ScholarPubMed
Niederkorn, J. Y., Stewart, G. L., Ghazizadeh, S., Mayhew, E., Ross, J. & Fischer, B. (1988). Trichinella pseudospiralis larvae express natural killer (NK) cell-associated asialo GMl antigen and stimulate pulmonary NK activity. Infection and Immunity 56, 1011–16.CrossRefGoogle Scholar
Ozeretskovskaya, N. N., Romanova, V. I., Alekseeva, M. I., Pereverzeva, E. V. & Uspenskii, S. M. (1969). Physiological and biochemical characteristics of natural Arctic, synanthropic North Caucasian and laboratory strains of Trichinella spiralis. Wiadomosci Parazytologiczne 15, 561–70. (In Russian.)Google Scholar
Ozeretskovskaya, N. N., Romanova, V. I., Alekseeva, M. I., Pereverzeva, E. V. & Uspenskii, S. M. (1970). Human trichinosis in the Soviet Arctic and the characteristics of the strain of arctic Trichinella. In Productivity and Conservation in Northern Circumpolar Lands (ed. Fuller, W. A. & Kevan, P. G.), pp. 133–42. INNC Publ. N. Ser. 10.Google Scholar
Pond, L., Wassom, D. L. & Hayes, C. E. (1988). Evidence for differential induction of helper T-cell subsets during Trichinella spiralis infection. Journal of Immunology 143, 4232–7.CrossRefGoogle Scholar
Pozio, E. (1987). Isoenzymatic typing of 23 Trichinella isolates. Tropical Medicine and Parasitology 38, 111–16.Google ScholarPubMed
Sukhdeo, M. V. K. & Meerovitch, E. (1979). A comparison of the antigenic characteristics of three geographical isolates of Trichinella. International Journal for Parasitology 9, 571–6.CrossRefGoogle ScholarPubMed
Takechi, M. & Fukumoto, S. (1987). Studies on some enzymes involved in carbohydrate metabolism of Trichinella spiralis and T. pseudospiralis: comparison between adult worms and muscle stage larvae. Yonago Acta Medico 30, 5164.Google Scholar
Tuohy, M., Lammas, D. A., Wakelin, D., Huntley, J. F., Newlands, G. F. J. & Miller, H. R. P. (1990). Functional correlations between mucosal mast cell activity and immunity to Trichinella spiralis in high and low responder mice. Parasite Immunology 12, 6785.CrossRefGoogle ScholarPubMed
Wakelin, D. & Lloyd, M. (1976). Immunity to primary and challenge infections of Trichinella spiralis in mice: a re-examination of conventional parameters. Parasitology 72, 173–82.CrossRefGoogle ScholarPubMed
Wassom, D. L., Dougherty, D. A. & Dick, T. A. (1988). Trichinella spiralis infections in inbred mice: immunologically-specific responses induced by different Trichinella isolates. Journal of Parasitology 72, 283–7.CrossRefGoogle Scholar