Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T00:19:39.489Z Has data issue: false hasContentIssue false

In vitro cytokines profile and ultrastructural changes of microglia and macrophages following interaction with Leishmania

Published online by Cambridge University Press:  09 April 2014

PATRICIA KARLA SANTOS RAMOS
Affiliation:
Instituto Evandro Chagas, Programa de Leishmanioses, Rod. BR-316, km 07, Bairro Levilândia, 67030-000, Ananindeua, Pará, Brazil
MAYSA DE VASCONCELOS BRITO
Affiliation:
Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Av. Almirante Barroso 492, Bairro Marco, 66090-000, Belém, Pará, Brazil
FERNANDO TOBIAS SILVEIRA
Affiliation:
Instituto Evandro Chagas, Programa de Leishmanioses, Rod. BR-316, km 07, Bairro Levilândia, 67030-000, Ananindeua, Pará, Brazil
CLÁUDIO GUEDES SALGADO
Affiliation:
Laboratório de Dermato-Imunologia, Universidade do Estado do Pará (UEPA), Universidade Federal do Pará (UFPA), Unidade de Referência em Dermatologia Sanitária do Estado do Pará ‘Dr. Marcello Candia’ (MC), Brazil
WANDERLEY DE SOUZA
Affiliation:
Laboratório de Ultraestrutura Celular Hertha Meyer, Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
CRISTOVAM WANDERLEY PICANÇO-DINIZ
Affiliation:
Laboratório de Investigações em Neurodegeneração e Infecção, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Brazil Hospital Universitário João de Barros Barreto, Rua Mundurucus, no. 4487, Lab de Investigações em Neurodegeneração e Infecção Guamá CEP 66073-000, Belém, PA, Brazil
JOSÉ ANTONIO JUNIOR PICANÇO-DINIZ*
Affiliation:
Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Av. Almirante Barroso 492, Bairro Marco, 66090-000, Belém, Pará, Brazil
*
* Corresponding author: Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Av. Almirante Barroso No 492, bairro Marco, Belém, Pará, CEP 66090-000, Brazil. E-mail: jose_apdj@yahoo.com.br

Summary

In the present study, we assessed morphological changes and cytokine production after in vitro interaction with causative agents of American cutaneous leishmaniasis and compared the microglia and macrophage immune responses. Cultures of microglia and macrophages infected with stationary-phase promastigotes of Leishmania (Viannia) shawi, Leishmania (Viannia) braziliensis or Leishmania (Leishmania) amazonensis were evaluated 24, 48 and 72 h after interaction. Macrophages only presented the classical phagocytic process while microglia also displayed large cytoplasmic projections similar to the ruffles described in macropinocytosis. In the macrophage cultures, the percentage of infected cells increased over time, in a fashion that was dependent on the parasite species. In contrast, in microglial cells as the culture time progressed, there was a significant reduction in the percentage of infected cells independent of parasite species. Measurements of cytokines in macrophage cultures 48 h after interactions revealed distinct expression patterns for different parasites, whereas in microglial cultures they were similar for all Leishmania tested species. Taken together, our results suggest that microglia may have a higher phagocytic ability and cytotoxic potential than macrophages for all investigated species. The robust response of microglia against all parasite species may suggest microglia have an important role in the defence against cerebral leishmaniasis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abreu-Silva, A. L., Calabrese, K. S., Tedesco, R. C., Mortara, R. A. and Goncalves da Costa, S. C. (2003). Central nervous system involvement in experimental infection with Leishmania (Leishmania) amazonensis . American Journal of Tropical Medicine and Hygiene 68, 661665.Google Scholar
Alexander, J. and Bryson, K. (2005). T helper (h)1/Th2 and Leishmania: paradox rather than paradigm. Immunology Letters 99, 1723.Google Scholar
Baetas-da-Cruz, W., Macedo-Silva, R. M., Santos-Silva, A., Henriques-Pons, A., Madeira, M. F., Corte-Real, S. and Cavalcante, L. A. (2004). Destiny and intracellular survival of Leishmania amazonensis in control and dexamethasone-treated glial cultures: protozoa-specific glycoconjugate tagging and TUNEL staining. Journal of Histochemistry and Cytochemistry 52, 10471055.CrossRefGoogle ScholarPubMed
Barral, A., Barral-Netto, M., Yong, E. C., Brownell, C. E., Twardzik, D. R. and Reed, S. G. (1993). Transforming growth factor beta as a virulence mechanism for Leishmania braziliensis . Proceedings of the National Academy of Sciences USA 90, 34423446.CrossRefGoogle ScholarPubMed
Barral-Netto, M., Barral, A., Brownell, C. E., Skeiky, Y. A., Ellingsworth, L. R., Twardzik, D. R. and Reed, S. G. (1992). Transforming growth factor-beta in leishmanial infection: a parasite escape mechanism. Science 257, 545548.Google Scholar
Barrias, E. S., Reignault, L. C., De Souza, W. and Carvalho, T. M. (2012). Trypanosoma cruzi uses macropinocytosis as an additional entry pathway into mammalian host cell. Microbes and Infection/Institut Pasteur 14, 13401351. doi: 10.1016/j.micinf.2012.08.003.CrossRefGoogle ScholarPubMed
Barrias, E. S., de Carvalho, T. M. and De Souza, W. (2013). Trypanosoma cruzi: entry into mammalian host cells and parasitophorous vacuole formation. Frontiers in Immunology 4, 186. doi: 10.3389/fimmu.2013.00186.Google Scholar
Bennett, C. L., Misslitz, A., Colledge, L., Aebischer, T. and Blackburn, C. C. (2001). Silent infection of bone marrow-derived dendritic cells by Leishmania mexicana amastigotes. European Journal of Immunology 31, 876883.Google Scholar
Bogdan, C. and Nathan, C. (1993). Modulation of macrophage function by transforming growth factor beta, interleukin-4, and interleukin-10. Annals of the New York Academy of Sciences 685, 713739.CrossRefGoogle ScholarPubMed
Boom, W. H., Liebster, L., Abbas, A. K. and Titus, R. G. (1990). Patterns of cytokine secretion in murine leishmaniasis: correlation with disease progression or resolution. Infection and Immunity 58, 38633870.Google Scholar
Boutard, V., Havouis, R., Fouqueray, B., Philippe, C., Moulinoux, J. P. and Baud, L. (1995). Transforming growth factor-beta stimulates arginase activity in macrophages. Implications for the regulation of macrophage cytotoxicity. Journal of Immunology 155, 20772084.CrossRefGoogle ScholarPubMed
Buccione, R., Orth, J. D. and McNiven, M. A. (2004). Foot and mouth: podosomes, invadopodia and circular dorsal ruffles. Nature Reviews. Molecular Cell Biology 5, 647657.Google Scholar
Carrera, L., Gazzinelli, R. T., Badolato, R., Hieny, S., Muller, W., Kuhn, R. and Sacks, D. L. (1996). Leishmania promastigotes selectively inhibit interleukin 12 induction in bone marrow-derived macrophages from susceptible and resistant mice. Journal of Experimental Medicine 183, 515526.CrossRefGoogle ScholarPubMed
Chandra, D. and Naik, S. (2008). Leishmania donovani infection down-regulates TLR2-stimulated IL-12p40 and activates IL-10 in cells of macrophage/monocytic lineage by modulating MAPK pathways through a contact-dependent mechanism. Clinical and Experimental Immunology 154, 224234. doi: 10.1111/j.1365-2249.2008.03741.x.Google Scholar
Corraliza, I. M., Soler, G., Eichmann, K. and Modolell, M. (1995). Arginase induction by suppressors of nitric oxide synthesis (IL-4, IL-10 and PGE2) in murine bone-marrow-derived macrophages. Biochemical and Biophysical Research Communications 206, 667673.Google Scholar
Cupolillo, E., Grimaldi, G. Jr. and Momen, H. (1995). Discrimination of Leishmania isolates using a limited set of enzymatic loci. Annals of Tropical Medicine and Parasitology 89, 1723.Google Scholar
Diniz, L. M., Duani, H., Freitas, C. R., Figueiredo, R. M. and Xavier, C. C. (2010). Neurological involvement in visceral leishmaniasis: case report. Journal of the Brazilian Society of Tropical Medicine 43, 743745.Google Scholar
Doherty, G. J. and McMahon, H. T. (2009). Mechanisms of endocytosis. Annual Review of Biochemistry 78, 857902. doi: 10.1146/annurev.biochem.78.081307.110540.Google Scholar
Gantt, K. R., Schultz-Cherry, S., Rodriguez, N., Jeronimo, S. M., Nascimento, E. T., Goldman, T. L., Recker, T. J., Miller, M. A. and Wilson, M. E. (2003). Activation of TGF-beta by Leishmania chagasi: importance for parasite survival in macrophages. Journal of Immunology 170, 26132620.Google Scholar
Garcia-Alonso, M., Nieto, C. G., Blanco, A., Requena, J. M., Alonso, C. and Navarrete, I. (1996). Presence of antibodies in the aqueous humour and cerebrospinal fluid during Leishmania infections in dogs. Pathological features at the central nervous system. Parasite Immunology 18, 539546.Google Scholar
Gardener, P. J., Chance, M. L. and Peters, W. (1974). Biochemical taxonomy of Leishmania. II: electrophoretic variation of malate dehydrogenase. Annals of Tropical Medicine and Parasitology 68, 317325.Google Scholar
Ghalib, H. W., Whittle, J. A., Kubin, M., Hashim, F. A., El-Hassan, A. M., Grabstein, K. H., Trinchieri, G. and Reed, S. G. (1995). IL-12 enhances Th1-type responses in human Leishmania donovani infections. Journal of Immunology 154, 46234629.Google Scholar
Harms, A. S., Lee, J. K., Nguyen, T. A., Chang, J., Ruhn, K. M., Trevino, I. and Tansey, M. G. (2012). Regulation of microglia effector functions by tumor necrosis factor signaling. Glia 60, 189202. doi: 10.1002/glia.21254.Google Scholar
Heinzel, F. P., Sadick, M. D., Mutha, S. S. and Locksley, R. M. (1991). Production of interferon gamma, interleukin 2, interleukin 4, and interleukin 10 by CD4+ lymphocytes in vivo during healing and progressive murine leishmaniasis. Proceedings of the National Academy of Sciences USA 88, 70117015.Google Scholar
Heinzel, F. P., Schoenhaut, D. S., Rerko, R. M., Rosser, L. E. and Gately, M. K. (1993). Recombinant interleukin 12 cures mice infected with Leishmania major. Journal of Experimental Medicine 177, 15051509.Google Scholar
Iniesta, V., Gómez-Nieto, L. C. and Corraliza, I. (2001). The inhibition of arginase by N(omega)-hydroxy-l-arginine controls the growth of Leishmania inside macrophages. Journal of Experimental Medicine 193, 777784.CrossRefGoogle Scholar
Jana, M., Dasgupta, S., Pal, U. and Pahan, K. (2009). IL-12 p40 homodimer, the so-called biologically inactive molecule, induces nitric oxide synthase in microglia via IL-12R beta 1. Glia 57, 15531565. doi: 10.1002/glia.20869.Google Scholar
Ladwein, M. and Rottner, K. (2008). On the Rho'd: the regulation of membrane protrusions by Rho-GTPases. FEBS Letters 582, 20662074. doi: 10.1016/j.febslet.2008.04.033.Google Scholar
Li, J., Hunter, C. A. and Farrell, J. P. (1999). Anti-TGF-beta treatment promotes rapid healing of Leishmania major infection in mice by enhancing in vivo nitric oxide production. Journal of Immunology 162, 974979.Google Scholar
Liew, F. Y., Millott, S., Parkinson, C., Palmer, R. M. and Moncada, S. (1990). Macrophage killing of Leishmania parasite in vivo is mediated by nitric oxide from L-arginine. Journal of Immunology 144, 47944797.Google Scholar
Lim, J. P. and Gleeson, P. A. (2011). Macropinocytosis: an endocytic pathway for internalising large gulps. Immunology and Cell Biology 89, 836843. doi: 10.1038/icb.2011.20.Google Scholar
Lima, F. R., Gervais, A., Colin, C., Izembart, M., Neto, V. M. and Mallat, M. (2001). Regulation of microglial development: a novel role for thyroid hormone. Journal of Neuroscience 21, 20282038.Google Scholar
Machado, G. F., Melo, G. D., Moraes, O. C., Souza, M. S., Marcondes, M., Perri, S. H. and Vasconcelos, R. O. (2010). Differential alterations in the activity of matrix metalloproteinases within the nervous tissue of dogs in distinct manifestations of visceral leishmaniasis. Veterinary Immunology and Immunopathology 136, 340345. doi: 10.1016/j.vetimm.2010.03.024.CrossRefGoogle ScholarPubMed
Melby, P. C., Chandrasekar, B., Zhao, W. and Coe, J. E. (2001). The hamster as a model of human visceral leishmaniasis: progressive disease and impaired generation of nitric oxide in the face of a prominent Th1-like cytokine response. Journal of Immunology 166, 19121920.Google Scholar
Melo, G. D. and Machado, G. F. (2011). Glial reactivity in dogs with visceral leishmaniasis: correlation with T lymphocyte infiltration and with cerebrospinal fluid anti-Leishmania antibody titres. Cell and Tissue Research 346, 293304. doi: 10.1007/s00441-011-1290-7.Google Scholar
Moura Neto, V., Mallat, M., Jeantet, C. and Prochiantz, A. (1983). Microheterogeneity of tubulin proteins in neuronal and glial cells from the mouse brain in culture. EMBO Journal 2, 12431248.Google Scholar
Nieto, C. G., Vinuelas, J., Blanco, A., Garcia-Alonso, M., Verdugo, S. G. and Navarrete, I. (1996). Detection of Leishmania infantum amastigotes in canine choroid plexus. Veterinary Record 139, 346347.CrossRefGoogle ScholarPubMed
Oliveira, E., Oshiro, E. T., Pinto, R. V., Castro, B. C., Daniel, K. B., Oliveira, J. M., Junior, M. S., Guimaraes, E. B., Silva, J. M. and Dorval, M. E. (2011). Presence of amastigotes in the central nervous system of hamsters infected with Leishmania sp. Brazilian Journal of Veterinary Parasitology 20, 97102.Google Scholar
Olson, J. K. and Miller, S. D. (2004). Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. Journal of Immunology 173, 39163924.Google Scholar
Omer, F. M., Kurtzhals, J. A. and Riley, E. M. (2000). Maintaining the immunological balance in parasitic infections: a role for TGF-beta? Parasitology Today 16, 1823.Google Scholar
Petersen, C. A. and Greenlee, M. H. (2011). Neurologic manifestations of Leishmania spp. infection. Journal of Neuroparasitology 2.Google Scholar
Prasad, L. S. and Sen, S. (1996). Migration of Leishmania donovani amastigotes in the cerebrospinal fluid. American Journal of Tropical Medicine and Hygiene 55, 652654.Google Scholar
Prinz, M., Priller, J., Sisodia, S. S. and Ransohoff, R. M. (2011). Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. Nature Neuroscience 14, 12271235. doi: 10.1038/nn.2923.Google Scholar
Reed, S. G. (1999). TGF-beta in infections and infectious diseases. Microbes and Infection/Institut Pasteur 1, 13131325. doi: 10.1016/S1286-4579(99)00252-X.Google Scholar
Reiner, S. L., Zheng, S., Wang, Z. E., Stowring, L. and Locksley, R. M. (1994). Leishmania promastigotes evade interleukin 12 (IL-12) induction by macrophages and stimulate a broad range of cytokines from CD4+ T cells during initiation of infection. Journal of Experimental Medicine 179, 447456.Google Scholar
Reithinger, R., Dujardin, J. C., Louzir, H., Pirmez, C., Alexander, B. and Brooker, S. (2007). Cutaneous leishmaniasis. Lancet Infectious Diseases 7, 581596. doi: 10.1016/S1473-3099(08)70159-2.Google Scholar
Rock, R. B., Gekker, G., Hu, S., Sheng, W. S., Cheeran, M., Lokensgard, J. R. and Peterson, P. K. (2004). Role of microglia in central nervous system infections. Clinical Microbiology Reviews 17, 942964. doi: 10.1128/CMR.17.4.942-964.2004.Google Scholar
Rodrigues, V., Santana da Silva, J. and Campos-Neto, A. (1998). Transforming growth factor beta and immunosuppression in experimental visceral leishmaniasis. Infection and Immunity 66, 12331236.CrossRefGoogle ScholarPubMed
Rodriguez-Sosa, M., Monteforte, G. M. and Satoskar, A. R. (2001). Susceptibility to Leishmania mexicana infection is due to the inability to produce IL-12 rather than lack of IL-12 responsiveness. Immunology and Cell Biology 79, 320322. doi: 10.1046/j.1440-1711.2001.01014.x.Google Scholar
Satoskar, A., Bluethmann, H. and Alexander, J. (1995). Disruption of the murine interleukin-4 gene inhibits disease progression during Leishmania mexicana infection but does not increase control of Leishmania donovani infection. Infection and Immunity 63, 48944899.CrossRefGoogle Scholar
Scott, P., Natovitz, P., Coffman, R. L., Pearce, E. and Sher, A. (1988). Immunoregulation of cutaneous leishmaniasis. T cell lines that transfer protective immunity or exacerbation belong to different T helper subsets and respond to distinct parasite antigens. Journal of Experimental Medicine 168, 16751684.Google Scholar
Silveira, F. T., Ishikawa, E. A., De Souza, A. A. and Lainson, R. (2002). An outbreak of cutaneous leishmaniasis among soldiers in Belem, Para State, Brazil, caused by Leishmania (Viannia) lindenbergi n. sp. A new leishmanial parasite of man in the Amazon region. Parasite 9, 4350.Google Scholar
Stamm, L. M., Räisänen-Sokolowski, A., Okano, M., Russell, M. E., David, J. R. and Satoskar, A. R. (1998). Mice with STAT6-targeted gene disruption develop a Th1 response and control cutaneous leishmaniasis. Journal of Immunology 161, 61806188.Google Scholar
Stenger, S., Donhauser, N., Thüring, H., Röllinghoff, M. and Bogdan, C. (1996). Reactivation of latent leishmaniasis by inhibition of inducible nitric oxide synthase. Journal of Experimental Medicine 183, 15011514.Google Scholar
Sypek, J. P., Chung, C. L., Mayor, S. E., Subramanyam, J. M., Goldman, S. J., Sieburth, D. S., Wolf, S. F. and Schaub, R. G. (1993). Resolution of cutaneous leishmaniasis: interleukin 12 initiates a protective T helper type 1 immune response. Journal of Experimental Medicine 177, 17971802.Google Scholar
Vinuelas, J., Garcia-Alonso, M., Ferrando, L., Navarrete, I., Molano, I., Miron, C., Carcelen, J., Alonso, C. and Nieto, C. G. (2001). Meningeal leishmaniasis induced by Leishmania infantum in naturally infected dogs. Veterinary Parasitology 101, 2327.Google Scholar
Wahl, S. M. (1994). Transforming growth factor beta: the good, the bad, and the ugly. Journal of Experimental Medicine 180, 15871590.CrossRefGoogle ScholarPubMed
Walker, M., Kublin, J. G. and Zunt, J. R. (2006). Parasitic central nervous system infections in immunocompromised hosts: malaria, microsporidiosis, leishmaniasis, and African trypanosomiasis. Clinical Infectious Diseases 42, 115125. doi: 10.1086/498510.Google Scholar
Wanderley, J. L., Moreira, M. E., Benjamin, A., Bonomo, A. C. and Barcinski, M. A. (2006). Mimicry of apoptotic cells by exposing phosphatidylserine participates in the establishment of amastigotes of Leishmania (L) amazonensis in mammalian hosts. Journal of Immunology 176, 18341839.Google Scholar
Wei, X. Q., Charles, I. G., Smith, A., Ure, J., Feng, G. J., Huang, F. P., Xu, D., Muller, W., Moncada, S. and Liew, F. Y. (1995). Altered immune responses in mice lacking inducible nitric oxide synthase. Nature 375, 408411. doi: 10.1038/375408a0.Google Scholar
Weinheber, N., Wolfram, M., Harbecke, D. and Aebischer, T. (1998). Phagocytosis of Leishmania mexicana amastigotes by macrophages leads to a sustained suppression of IL-12 production. European Journal of Immunology 28, 24672477. doi: 10.1002/(SICI)1521-4141(199808)28:08<2467::AID-IMMU2467>3.0.CO;2-1.Google Scholar
Wilson, M. E., Young, B. M., Davidson, B. L., Mente, K. A. and McGowan, S. E. (1998). The importance of TGF-beta in murine visceral leishmaniasis. Journal of Immunology 161, 61486155.Google Scholar
Zenian, A., Rowles, P. and Gingell, D. (1979). Scanning electron-microscopic study of the uptake of Leishmania parasites by macrophages. Journal of Cell Science 39, 187199.Google Scholar
Zuiderwijk-Sick, E. A., van der Putten, C., Bsibsi, M., Deuzing, I. P., de Boer, W., Persoon-Deen, C., Kondova, I., Boven, L. A., van Noort, J. M., t Hart, B. A., Amor, S. and Bajramovic, J. J. (2007). Differentiation of primary adult microglia alters their response to TLR8-mediated activation but not their capacity as APC. Glia 55, 15891600. doi: 10.1002/glia.20572.Google Scholar