Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T00:55:21.628Z Has data issue: false hasContentIssue false

Implications of genetic exchange in the study of protozoan infections

Published online by Cambridge University Press:  06 April 2009

D. Walliker
Affiliation:
Department of Genetics, University of Edinburgh, West Mains Road, Edinburgh EH9 3JN

Summary

Genetic exchange is now known to occur during the life-cycle of many parasitic protozoa, including malaria parasites, coccidia and trypanosomes. The process is studied by making deliberate crosses between cloned organisms differing in clearly defined markers. In malaria parasites, crosses have been made between parasites differing in characters such as isoenzymes, antigens and other proteins, drug sensitivity, and chromosome and other DNA polymorphisms. Crosses are made by transmitting a mixture of gametes of each clone through mosquitoes to allow cross-fertilization to take place, and examining the resulting progeny by cloning for organisms exhibiting non-parental combinations of characters. The inheritance of many characters, such as antigen and protein variants, is in accordance with Mendelian expectations for a haploid organism. Recombination occurs at a higher than expected frequency. Studies on chromosomes have show that crossing-over events commonly occur following meiosis of hybrid zygotes. Repetitive DNA and subtelomeric regions of chromosomes appear to be particularly susceptible to such recombination events. In trypanosomes, crosses between clones of Trypanosoma brucei have shown that hybrids are formed during tsetse fly transmission. The organism appears to be mainly diploid, but some characters including certain chromosomes seem to be inherited in a non-Mendelian manner.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ballou, R. S., Hoffman, S. L., Sherwood, J. A., Hollingdale, M. R., Neva, F. A., Hockmeyer, W. T., Gordon, D. M., Schneider, I., Wirtz, R. A., Young, J. F., Wasserman, G. F., Reeve, P., Diǵgs, C. L. & Chulay, J. F. (1987). Safety and efficacy of a recombinant DNA Plasmodium falciparum sporozoite vaccine. Lancet i, 1277–81.Google Scholar
Beale, G. H., Carter, R. & Walliker, D. (1978). Genetics. In Rodent Malaria (ed. Killick-Kendrick, R. & Peters, W.), pp. 213245. London: Academic Press.Google Scholar
Bishop, A. (1958). An analysis of the development of resistance to metachloridine in clones of Plasmodium gallinaceum. Parasitology 48, 210–34.Google Scholar
Brown, H., Kemp, D. J., Barzaga, N., Brown, G. V., Anders, R. F. & Coppel, R. L. (1987). Sequence variation in S-antigen genes of Plasmodium falciparum. Molecular and Biological Medicine 4, 365–76.Google Scholar
Carter, R. (1978). Studies on enzyme variation in the murine malaria parasites Plasmodium berghei, P. yoelii, P. vinckei and P. chabaudi by starch gel electrophoresis. Parasitology 76, 241–67.CrossRefGoogle ScholarPubMed
Carter, R. & McGregor, I. A. (1973). Enzyme variation in Plasmodium falciparum in the Gambia. Transactions of the Royal Society of Tropical Medicine and Hygiene 67, 830–7.CrossRefGoogle ScholarPubMed
Chan, S-W., Walliker, D., Snewin, V., Hyde, J. E., Beale, G. & Scaife, J. G. (1988). Aspects of pyrimethamine resistance in Plasmodium falciparum. Proceedings of the South East Asian Parasitology Symposium, 12 1988 (in the Press).Google Scholar
Clark, J. T., Donachie, S., Anand, R., Wilson, C. F., Heidrich, H-G. & McBride, J. S. (1989). 46–53 kilodalton glycoprotein from the surface of Plasmodium falciparum merozoites. Molecular and Biochemical Parasitology 32, 1524.CrossRefGoogle ScholarPubMed
Corcoran, L. M., Forsyth, K. P., Bianco, A. E., Brown, G. V. & Kemp, D. J. (1986). Chromosome size polymorphisms in Plasmodium falciparum can involve deletions and are frequent in natural parasite populations. Cell 44, 8795.CrossRefGoogle ScholarPubMed
Corcoran, L. M., Thompson, J. K., Walliker, D. & Kemp, D. J. (1988). Homologous recombination within sub-telomeric repeat sequences generates chromosome size polymorphisms in Plasmodium falciparum. Cell 53, 807–13.Google Scholar
Cowman, A. F., Morry, M. J., Biggs, B. A., Cross, G. A. M. & Foote, S. J. (1988). Identification of amino acids linked to pyrimethamine resistance in dihydrofolate reductase–thymidylate synthase gene of Plasmodium falciparum. Proceedings of the National Academy of Sciences, USA 85, 9109–13.CrossRefGoogle Scholar
De La Cruz, V. F., Lal, A. A. & McCutchan, T. F. (1987). Sequence variation in putative functional domains of the circumsporozoite protein of Plasmodium falciparum; implications for vaccine development. Journal of Biological Chemistry 262, 11935–9.CrossRefGoogle ScholarPubMed
Fenton, B., Walker, A. & Walliker, D. (1985). Protein variation in clones of Plasmodium falciparum detected by two-dimensional electrophoresis. Molecular and Biochemical Parasitology 16, 173–83.CrossRefGoogle ScholarPubMed
Garnham, P. C. C. (1966). Malaria Parasites and Other Haemosporidia. Oxford: Blackwell Scientific Publications.Google Scholar
Gibson, W. C., Marshall, T. F. De C. & Godfrey, D. G. (1980). Numerical analysis of enzyme polymorphism: a new approach to the epidemiology and taxonomy of trypanosomes of the subgenus Trypanozoon. Advances in Parasitology 18, 175246.CrossRefGoogle Scholar
Greenberg, J. & Trembley, H. L. (1954). The apparent transfer of pyrimethamine-resistance from the BI strain of Plasmodium gallinaceum to the M strain. Journal of Parasitology 40, 667–72.Google Scholar
Herrington, D. A., Clyde, D. F., Losonsky, G., Cortesia, M., Murphy, J. R., Davis, J., Baqar, S., Felix, A. M., Heimer, E. P., Gillessen, D., Nardin, E., Nussenzweig, R. S., Nussenzweig, V., Hollingdale, M. & Levine, M. M. (1986). Safety and immunogenicity in man of a synthetic peptide malaria vaccine against Plasmodium falciparum sporozoites. Nature, London 328, 257–9.Google Scholar
Janse, C. J., Van Der Klooster, P. F. J., Van Der Kaay, H. J., Van Der Ploeg, M. & Overdulve, J. P. (1986). DNA synthesis in Plasmodium berghei during asexual and sexual development. Molecular and Biochemical Parasitology 20, 173–83.Google Scholar
Jenni, L., Marti, S., Schweizer, J., Betschart, B., Le Page, R. W. F., Wells, J., Tait, A., Paindavoine, P., Pays, E. & Steinert, M. (1986). Hybrid formation between African trypanosomes during cyclical transmission. Nature, London 322, 173–5.Google Scholar
Kemp, D. J., Thompson, J. K., Walliker, D. & Corcoran, L. M. (1987). Molecular karyotype of Plasmodium falciparum: conserved linkage groups and expendable histidine-rich protein genes. Proceedings of the National Academy of Sciences, USA 84, 7672–6.Google Scholar
Le Page, R. W. F., Wells, J. M., Prospero, T. D. & Sternberg, J. (1988). Genetic analysis of hybrid Trypanosoma brucei. In Molecular Genetics of Parasitic protozoa (ed. Turner, M. J. & Arnot, D.), pp. 6571. Cold Spring Harbor Laboratory.Google Scholar
Lockyer, M. J. & Schwarz, R. T. (1987). Strain variation in the circumsporozoite gene of Plasmodium falciparum. Molecular and Biochemical Parasitology 22, 101–8.CrossRefGoogle ScholarPubMed
Mayr, E. (1963). Animal Species and Evolution. Cambridge, Mass.: Harvard University Press.CrossRefGoogle Scholar
McBride, J. S., Newbold, C. I. & Anand, R. (1985). Polymorphism of a high molecular weight schizont antigen of the human malaria parasite Plasmodium falciparum. Journal of Experimental Medicine 161, 160–80.Google Scholar
Padua, R. A. (1981). Plasmodium chabaudi: genetics of resistance to chloroquine. Experimental Parasitology 52, 419–26.CrossRefGoogle ScholarPubMed
Paindavoine, P., Zampetti-Bosseler, F., Pays, E., Schweizer, J., Guyaux, M., Jenni, L. & Steinert, M. (1986). Trypanosome hybrids generated in tsetse flies by nuclear fusion. EMBO Journal 5, 3631–6.Google Scholar
Peterson, D. S., Walliker, D. & Wellems, T. E. (1988). Evidence that a point mutation in dihydrofolate reductase–thymidylate synthase confers resistance to pyrimethamine in falciparum malaria. Proceedings of the National Academy of Sciences, USA 85, 9114–18.Google Scholar
Pfefferkorn, E. R. & Pfefferkorn, L. C. (1980). Toxoplasma gondii: genetic recombination between drug-resistant mutants. Experimental Parasitology 50, 305–16.Google Scholar
Pologe, L. G. & Ravetch, J. V. (1988). Large deletions result from breakage and healing of P. falciparum chromosomes. Cell 55, 869–74.Google Scholar
Prensier, G. & Slomianny, Ch. (1986). The karyotype of Plasmodium falciparum determined by ultrastructural serial sectioning and 3D reconstruction. Journal of Parasitology 72, 731–6.Google Scholar
Rollinson, D., Joyner, L. P. & Norton, C. C. (1979). Eitneria maxima: the use of enzyme markers to detect the genetic transfer of drug resistance between lines. Parasitology 78, 361–7.Google Scholar
Rosario, V. E. (1976). Genetics of chloroquine-resistance in malaria parasites. Nature, London 261, 585–6.Google Scholar
Sanderson, A., Walliker, D. & Molez, J.-F. (1981). Enzyme typing of Plasmodium falciparum from African and some other Old World countries. Transactions of the Royal Society of Tropical Medicine and Hygiene 75, 263–7.Google Scholar
Sargeaunt, P. G., Jackson, T. F. H. G., Wiffen, S. R. & Bhojnani, R. (1988). Biological evidence of genetic exchange of Entamoeba histolytica. Transactions of the Royal Society of Tropical Medicine and Hygiene 82, 862–7.Google Scholar
Sinden, R. E. (1978). Cell Biology. In Rodent Malaria (ed. Killick-Kendrick, R. & Peters, W.), pp. 85168. London: Academic Press.Google Scholar
Sinden, R. E. & Hartley, R. H. (1985). Identification of the meiotic division of malarial parasites. Journal of Protozoology 32, 742–4.Google Scholar
Sinnis, P. & Wellems, T. E. (1988). Long-range restriction maps of Plasmodium falciparum chromosomes: crossingover and size variation among geographically distant isolates. Genomics 3, 287–95.Google Scholar
Smythe, J. A., Coppel, R. L., Brown, G. V., Ramasamy, R., Kemp, D. J. & Anders, R. F. (1988). Identification of novel integral membrane proteins of Plasmodium falciparum. Proceedings of the National Academy of Sciences, USA 85, 5195–9.Google Scholar
Sternberg, J., Tait, A., Haley, S., Wells, J. M., Le Page, R. W. F., Schweizer, J. & Jenni, L. (1988). Gene exchange in African trypanosomes: characterisation of a new hybrid genotype. Molecular and Biochemical Parasitology 27, 191200.Google Scholar
Sternberg, J., Turner, C. M. R., Wells, J. M., Ranford-Cartwright, L. C., Le Page, R. W. F. & Tait, A. (1989). Gene exchange in African trypanosomes: frequency and allelic segregation. Molecular and Biochemical Parasitology 34, 269–79.Google Scholar
Szarfman, A., Walliker, D., McBride, J. S., Lyon, J. A., Quakyi, I. A. & Carter, R. (1988). Allelic forms of gp 195, a major blood-stage antigen of Plasmodium falciparum, are expressed in liver stages. Journal of Experimental Medicine 167, 231–6.Google Scholar
Tait, A. (1980). Evidence for diploidy and mating in trypanosomes. Nature, London 287, 536–8.CrossRefGoogle ScholarPubMed
Tait, A., Sternberg, J. & Turner, C. M. R. (1988). Genetic exchange in Trypanosoma brucei: allelic segregation and reassortment. In Molecular Genetics of Parasitic Protozoa (ed. Turner, M. J. & Arnot, D.), pp. 5864. Cold Spring Harbor Laboratory.Google Scholar
Tanabe, K., Mackay, M., Goman, M. & Scaife, J. G. (1987). Allelic dimorphism in a surface antigen gene of the malarial parasite Plasmodium falciparum. Journal of Molecular Biology 195, 273–87.Google Scholar
Thaithong, S., Beale, G. H., Fenton, B., McBride, J. S., Rosario, V., Walker, A. & Walliker, D. (1984). Clonal diversity in a single isolate of the malaria parasite Plasmodium falciparum. Transactions of the Royal Society of Tropical Medicine and Hygiene 78, 242–5.CrossRefGoogle Scholar
Thaithong, S., Suebsang, L., Rooney, W. & Beale, G. H. (1988). Evidence of increased chloroquine sensitivity in Thai isolates of Plasmodium falciparum. Transactions of the Royal Society of Tropical Medicine and Hygiene 82, 37–8.Google Scholar
Tibayrenc, M., Cariou, M-L., Solignac, M. & Carlier, Y. (1981). Arguments génétiques contre l'existence d'une sexualité actuelle chez Trypanosoma cruzi. Implications taxinomiques. Compte rendu hebdomadaires des séances de l'Académie des sciences, Paris 293, 207–9.Google Scholar
Van Der Ploeg, L., Cornelissen, A. W. C. A., Barry, J. D. & Borst, P. (1984). Chromosomes of kinetoplastida. EMBO Journal 3, 3109–15.Google Scholar
Walliker, D., Carter, R. & Morgan, S. (1973). Genetic recombination in Plasmodium berghei. Parasitology 66, 309–20.Google Scholar
Walliker, D., Carter, R. & Sanderson, A. (1975). Genetic studies on Plasmodium chabaudi: recombination between enzyme markers. Parasitology 70, 1924.CrossRefGoogle ScholarPubMed
Walliker, D., Quakyi, I. A., Wellems, T. E., McCutchan, T. F., Szarfman, A., London, W. T., Corcoran, L. M., Burkot, T. R. & Carter, R. (1987). Genetic analysis of the human malaria parasite Plasmodium falciparum. Science 236, 1661–6.Google Scholar
Wellems, T. E., Walliker, D., Smith, C. L., Do Rosario, V. E., Maloy, W. L., Howard, R. J., Carter, R. & McCutchan, T. F. (1987). A histidine-rich protein gene marks a linkage group favored strongly in a genetic cross of Plasmodium falciparum. Cell 49, 633–42.Google Scholar
Wellems, T. E., Oduola, A. M. J., Fenton, B., Desjardins, R. E., Panton, L. J. & Rosario, V. E. (1988). Chromosome Size variation occurs in cloned Plasmodium falciparum on in vitro cultivation. Revista Brasileira de Genetica 11, 813–25.Google Scholar
Wells, J. M., Prospero, T. D., Jenni, L. & Le Page, R. W. F. (1987). DNA contents and molecular karyotypes of hybrid Trypanosoma brucei. Molecular and Biochemical Parasitology 24, 103–16.Google Scholar