Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T22:55:32.303Z Has data issue: false hasContentIssue false

Identification of the first pyrimidine nucleobase transporter in Leishmania: similarities with the Trypanosoma brucei U1 transporter and antileishmanial activity of uracil analogues

Published online by Cambridge University Press:  27 October 2004

I. G. PAPAGEORGIOU
Affiliation:
Department of Biochemistry, Hellenic Pasteur Institute, 127 Vassilissis Sophias, 115 21 Athens, Greece Department of Botany, Faculty of Biology, University of Athens, Panepistimioupolis 15781 Athens, Greece
L. YAKOB
Affiliation:
Institute of Biomedical and Life Sciences, Division of Infection and Immunity, University of Glasgow, Glasgow G12 8QQ, UK
M. I. AL SALABI
Affiliation:
Institute of Biomedical and Life Sciences, Division of Infection and Immunity, University of Glasgow, Glasgow G12 8QQ, UK
G. DIALLINAS
Affiliation:
Department of Botany, Faculty of Biology, University of Athens, Panepistimioupolis 15781 Athens, Greece
K. P. SOTERIADOU
Affiliation:
Department of Biochemistry, Hellenic Pasteur Institute, 127 Vassilissis Sophias, 115 21 Athens, Greece
H. P. DE KONING
Affiliation:
Institute of Biomedical and Life Sciences, Division of Infection and Immunity, University of Glasgow, Glasgow G12 8QQ, UK

Abstract

While purine transport has been widely studied in protozoa, almost nothing is known about their capacity to salvage pyrimidines. Here, we report a Leishmania major transporter with high affinity for uracil (Km=0·32±0·07 μM) which we designated LmU1. This transporter displayed a high degree of specificity, as it had virtually no affinity for cytosine, thymine or purine nucleobases, nor did it transport pyrimidine nucleosides. Highest affinity was for 5-fluorouracil. The results show that the permeant binding site of LmU1 interacts strongly with the keto groups of uracil, as shown by a low affinity for 2-thio- and 4-thiouracil. LmU1 appears to further bind uracil through a weak hydrogen bond with N(1)H of the pyrimidine ring in addition to a stronger H-bond with N(3)H. Substrate binding and selectivity were strikingly similar to that of the U1 transporter in the related kinetoplastid Trypanosoma brucei. Uracil analogues likely to be transported by LmU1 were also screened for antileishmanial activity, with 5-fluorouracil displaying strong activity against promastigotes and intracellular amastigotes. Overall, the results show that, like purine nucleobase transport, pyrimidine nucleobase transport function is very similar in L. major and T. brucei insect forms.

Type
Research Article
Copyright
2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

ABRISHAMI, M., SOHEILIAN, M., FARAHI, A. & DOWLATI, Y. ( 2002). Successful treatment of ocular leishmaniasis. European Journal of Dermatology 12, 8889.Google Scholar
AL-SALABI, M. I., WALLACE, L. J. M. & DE KONING, H. P. ( 2003). A Leishmania major nucleobase transporter is a functional homolog of the Trypanosoma brucei H2 transporter. Molecular Pharmacology 63, 814820.CrossRefGoogle Scholar
BARRETT, M. P., TETAUD, E., SEYFANG, A., BRINGAUD, F. & BALTZ, T. ( 1998). Trypanosome glucose transporters. Molecular and Biochemical Parasitology 91, 195205.CrossRefGoogle Scholar
BEAK, P., COVINGTON, J. B., SMITH, S. G., WHITE, J. M. & ZEIGLER, J. M. ( 1980). Displacement of protomeric equilibria by self-association: Hydroxypyridine – pyridone and mercaptopyridine – thiopyridone. Journal of Organic Chemistry 45, 13541362.CrossRefGoogle Scholar
BROWN, D. J. ( 1994). The Chemistry of Heterocyclic Compounds. Vol. 52: The Pyrimidines. John Wiley and Sons, New York.CrossRef
BURCHMORE, R. J. S., WALLACE, L. J. M., CANDLISH, D., AL-SALABI, M. I., BEAL, P. R., BARRETT, M. P., BALDWIN, S. A. & DE KONING, H. P. ( 2003). Cloning, heterologous expression and in situ characterization of the first high affinity nucleobase transporter from a protozoan. Journal of Biological Chemistry 278, 2350223507.CrossRefGoogle Scholar
CARTER, N. S., LANDFEAR, S. M. & ULLMAN, B. ( 2001). Nucleoside transporters in parasitic protozoa. Trends in Parasitology 17, 142145.CrossRefGoogle Scholar
CROFT, S. L. & YARDLEY, V. ( 2000). Chemotherapy of leishmaniasis. Current Pharmacological Design 8, 319342.Google Scholar
CROFT, S. L. ( 2001). Monitoring drug resistance in leishmaniasis. Tropical Medicine and International Health 6, 899905.CrossRefGoogle Scholar
DAS, V. N., RANJAN, A., SINHA, A. N., VERMA, N., LAL, C. S., GUPTA, A. K., SIDDIQUI, N. A. & KAR, S. K. ( 2001). A randomized clinical trial of low dosage combination of pentamidine and allopurinol in the treatment of antimony unresponsive cases of visceral leishmaniasis. Journal of the Association of Physicians India 49, 609613.Google Scholar
DAVEY, R. A., EY, P. L. & MAYRHOFER, G. ( 1991). Characteristics of thymidine transport in Giardia intestinalis trophozoites. Molecular and Biochemical Parasitology 48, 163172.CrossRefGoogle Scholar
DE KONING, H. P. ( 2001). Transporters in African trypanosomes: role in drug action and resistance. International Journal for Parasitology 31, 512522.CrossRefGoogle Scholar
DE KONING, H. P., AL-SALABI, M. I., COHEN, A., COOMBS, G. H. & WASTLING, J. M. ( 2003). Identification and characterisation of high affinity purine nucleoside and nucleobase transporters in Toxoplasma gondii. International Journal for Parasitology 33, 821831.CrossRefGoogle Scholar
DE KONING, H. P. & DIALLINAS, G. ( 2000). Nucleobase transporters (review). Molecular Membrane Biology 17, 7594.Google Scholar
DE KONING, H. P. & JARVIS, S. M. ( 1997 a). Hypoxanthine uptake through a purine-selective nucleobase transporter in Trypanosoma brucei brucei procyclic cells is driven by protonmotive force. European Journal of Biochemistry 247, 11021110.Google Scholar
DE KONING, H. P. & JARVIS, S. M. ( 1997 b). Purine nucleobase transport in bloodstream forms of Trypanosoma brucei is mediated by two novel transporters. Molecular and Biochemical Parasitology 89, 245258.Google Scholar
DE KONING, H. P. & JARVIS, S. M. ( 1998). A highly selective, high-affinity transporter for uracil in Trypanosoma brucei brucei: evidence for proton-dependent transport. Biochemistry and Cell Biology 76, 853858.CrossRefGoogle Scholar
DE KONING, H. P. & JARVIS, S. M. ( 1999). Adenosine transporters in bloodstream forms of Trypanosoma brucei brucei: substrate recognition motifs and affinity for trypanocidal drugs. Molecular Pharmacology 56, 11621170.CrossRefGoogle Scholar
DE KONING, H. P., WATSON, C. J. & JARVIS, S. M. ( 1998). Characterisation of a nucleoside/proton symporter in procyclic Trypanosoma brucei brucei. Journal of Biological Chemistry 273, 94869494.CrossRefGoogle Scholar
DONOHUE, J. ( 1969). On N-H…S hydrogen bonds. Journal of Molecular Biology 45, 231235.CrossRefGoogle Scholar
ELGUERO, J., MARZIN, C., KATRITZKY, A. R. & LINDA, P. ( 1976). The tautomerism of heterocycles. In Advances in Heterocyclic Chemistry, Supplement 1. Academic Press, New York.
FUMAROLA, L., SPINELLI, R. & BRANDONISIO, O. ( 2004). In vitro assays for evaluation of drug activity against Leishmania spp. Research in Microbiology 155, 224230.CrossRefGoogle Scholar
GHOSH, M. & MUKHERJEE, T. ( 2000). Stage-specific development of a novel adenosine transporter in Leishmania donovani amastigotes. Molecular and Biochemical Parasitology 108, 9399.CrossRefGoogle Scholar
HENRIQUES, C., SANCHEZ, M. A., TRYON, R. & LANDFEAR, S. M. ( 2003). Molecular and functional characterization of the first nucleobase transporter gene from African trypanosomes. Molecular and Biochemical Parasitology 130, 101110.CrossRefGoogle Scholar
ISONO, K. ( 1991). Current progress on nucleoside antibiotics. Pharmacology and Therapeutics 52, 269286.CrossRefGoogle Scholar
IOVANNISCI, D. M. & ULLMAN, B. ( 1983). High efficiency plating method for Leishmania promastigotes in semi-defined or completely-defined medium. Journal of Parasitology 69, 633636.CrossRefGoogle Scholar
KATRITZKY, A. R., KARELSON, M. & HARRIS, P. A. ( 1991). Prototropic tautomerism of heteroaromatic compounds. Heterocycles 32, 329369.CrossRefGoogle Scholar
KOLB, V. M. ( 1997). Novel and unusual nucleosides as drugs. Progress in Drug Research 48, 195232.CrossRefGoogle Scholar
MATOVU, E., STEWART, M., GEISER, F., BRUN, R., MÄSER, P., WALLACE, L. J. M., BURCHMORE, R. J., ENYARU, J. C. K., BARRETT, M. P., KAMINSKY, R., SEEBECK, T. & DE KONING, H. P. ( 2003). The mechanisms of arsenical and diamidine uptake and resistance in Trypanosoma brucei. Eukaryotic Cell 2, 10031008.CrossRefGoogle Scholar
MIKUS, J. & STEVERDING, D. ( 2000). A simple colorimetric method to screen drug cytotoxicity against Leishmania using the dye Alamar Blue. Parasitology International 48, 265269.CrossRefGoogle Scholar
MOMENI, A. Z., REISZADAE, M. R. & AMINJAVAHERI, M. ( 2002). Treatment of cutaneous leishmaniasis with a combination of allopurinol and low-dose meglumine antimoniate. International Journal of Dermatology 41, 441443.CrossRefGoogle Scholar
PAPAGEORGIOU, F. T. & SOTERIADOU, K. P. ( 2002). Expression of a novel Leishmania gene encoding a histone H1-like protein in Leishmania major modulates parasite infectivity in vitro. Infection and Immunity 70, 69766986.CrossRefGoogle Scholar
PITHA, J. & SCHEIT, K. H. ( 1975). Hydrogen bonding abilities of 2,4-dithiouridine derivatives. Biochemistry 14, 554557.CrossRefGoogle Scholar
RÄZ, B., ITEN, M., GRETHER-BÜHLER, Y., KAMINSKY, R. & BRUN, R. ( 1997). The Alamar Blue assay to determine drug sensitivity of African trypanosomes (T. b. rhodesiense and T. b. gambiense) in vitro. Acta Tropica 68, 139147.Google Scholar
SANCHEZ, M. A., TRYON, R., PIERCE, S., VASUDEVAN, G. & LANDFEAR, S. M. ( 2004). Functional expression of a purine nucleobase transporter gene from Leishmania major. Molecular Membrane Biology 21, 1118.CrossRefGoogle Scholar
SANKAR, N., MACHADO, J., ABDULLA, P., HILLIKER, A. J. & COE, I. R. ( 2002). Comparative genomic analysis of equilibrative nucleoside transporters suggests conserved protein structure despite limited sequence identity. Nucleic Acids Research 30, 43394350.CrossRefGoogle Scholar
STEIN, A., VASEDUVAN, G., CARTER, N. S., ULLMAN, B., LANDFEAR, S. M. & KAVANAUGH, M. P. ( 2003). Equilibrative Nucleoside Transporter family members from Leishmania donovani are electrogenic proton symporters. Journal of Biological Chemistry 278, 3512735134.CrossRefGoogle Scholar
SUNDAR, S. ( 2001). Drug resistance in Indian visceral leishmaniasis. Tropical Medicine and International Health 6, 849854.CrossRefGoogle Scholar
TETAUD, E., BARRETT, M. P., BRINGAUD, F. & BALTZ, T. ( 1997). Kinetoplast glucose transporters. Biochemical Journal 325, 569580.CrossRefGoogle Scholar
VASUDEVAN, G., CARTER, N. S., DREW, M. E., BEVERLEY, S. M., SANCHEZ, M. A., SEYFANG, A., ULLMMAN, B. & LANDFEAR, S. M. ( 1998). Cloning of Leishmania nucleoside transporter genes by rescue of a transport-deficient mutant. Proceedings of the National Academy of Sciences, USA 95, 98739878.CrossRefGoogle Scholar
WALLACE, L. J. M., CANDLISH, D. & DE KONING, H. P. ( 2002). Different substrate recognition motifs of human and trypanosome nucleobase transporters: selective uptake of purine antimetabolites. Journal of Biological Chemistry 277, 2614926156.CrossRefGoogle Scholar