Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T22:31:59.379Z Has data issue: false hasContentIssue false

Glutamate-gated chloride channels and the mode of action of the avermectin/milbemycin anthelmintics

Published online by Cambridge University Press:  29 March 2006

A. J. WOLSTENHOLME
Affiliation:
Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK.
A. T. ROGERS
Affiliation:
Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK.

Abstract

The macrocyclic lactones are the biggest selling and arguably most effective anthelmintics currently available. They are good substrates for the P-glycoproteins, which might explain their selective toxicity for parasites over their vertebrate hosts. Changes in the expression of these pumps have been implicated in resistance to the macrocyclic lactones, but it is clear that they exert their anthelmintic effects by binding to glutamate-gated chloride channels expressed on nematode neurones and pharyngeal muscle cells. This effect is quite distinct from the channel opening induced by glutamate, the endogenous transmitter acting at these receptors, which produces rapidly opening and desensitising channels. Ivermectin-activated channels open very slowly but essentially irreversibly, leading to a very long-lasting hyperpolarisation or depolarisation of the neurone or muscle cell and therefore blocking further function. Molecular and genetic studies have shown that there are multiple GluCl isoforms in both free-living and parasitic nematodes: the exact genetic make-up and functions of the GluCl may vary between species. The known expression patterns of the GluCl explain most of the observed biological effects of treatment with the macrocyclic lactones, though the reason for the long-lasting inhibition of larval production in filarial species is still poorly understood.

Type
Research Article
Copyright
2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

ADELSBERGER, H., SCHEUR, T. & DUDEL, J. ( 1997). A patch clamp study of a glutamate chloride channel on pharyngeal muscle of the nematode Ascaris suum. Neuroscience Letters 230, 183186.CrossRefGoogle Scholar
ANZIANI, O. S., ZIMMERMANN, G., GUGLIEMONE, A. A., VAZQUEZ, R. & SUAREZ, E. ( 2001). Avermectin resistance in Cooperia pectinata in cattle in Argentina. Veterinary Record 149, 5859.CrossRefGoogle Scholar
ARENA, J. P., LIU, K. K., PARESS, P. S. & CULLY, D. F. ( 1991). Avermectin-sensitive chloride currents induced by Caenorhabditis elegans RNA in Xenopus oocytes. Molecular Pharmacology 40, 368374.Google Scholar
ARENA, J. P., LIU, K. K., PARESS, P. S. & CULLY, D. F. ( 1992). Expression of a glutamate-activated chloride current in Xenopus oocytes injected with Caenorhabditis elegans RNA: evidence for modulation by avermectin. Molecular Brain Research 15, 339348.CrossRefGoogle Scholar
ARENA, J. P., LIU, K. K., PARESS, P. S., FRAZIER, E. G., CULLY, D. F., MROZIK, H. & SCHAEFFER, J. M. ( 1995). The mechanism of action of avermectins in Caenorhabditis elegans – correlation between activation of glutamate-sensitive chloride current, membrane-binding and biological-activity. Journal of Parasitology 81, 286294.CrossRefGoogle Scholar
AVERY, L. ( 1993 a). The genetics of feeding in Caenorhabditis elegans. Genetics 133, 897917.Google Scholar
AVERY, L. ( 1993 b). Motor neuron M3 controls pharyngeal muscle relaxation timing in Caenorhabditis elegans. Journal of Experimental Biology 175, 283297.Google Scholar
AVERY, L. & HORVITZ, H. R. ( 1990). Effects of starvation and neuroactive drugs on feeding in Caenorhabditis elegans. Journal of Experimental Zoology 253, 263270.CrossRefGoogle Scholar
BIRD, A. F. & BIRD, J. ( 1991). The Structure of Nematodes. New York, Academic Press.
BLACKHALL, W. J., LIU, H. Y., XU, M., PRICHARD, R. K. & BEECH, R. N. ( 1998). Selection at a P-glycoprotein gene in ivermectin- and moxidectin-selected strains of Haemonchus contortus. Molecular and Biochemical Parasitology 95, 193201.CrossRefGoogle Scholar
BOTTJER, K. P. & BONE, L. W. ( 1985). Trichostrongylus colubriformis: effect of anthelmintics on ingestion and oviposition. International Journal for Parasitology 15, 501503.CrossRefGoogle Scholar
BROCKIE, P. J., MELLEM, J. E., HILLS, T., MADSEN, T. M. & MARICQ, A. V. ( 2001). The C. elegans glutamate receptor subunit NMR-1 is required for slow NMDA-activated currents that regulate reversal frequency during locomotion. Neuron 31, 617630.Google Scholar
BROWNLEE, D. A., HOLDEN-DYE, L. & WALKER, R. J. ( 1997). Actions of the anthelmintic ivermectin on the pharyngeal muscle of the parasitic nematode Ascaris suum. Parasitology 115, 553561.CrossRefGoogle Scholar
CAMPBELL, W. C., FISHER, M. H., STAPLEY, E. O., ALBERS-SCHÖNBERG, G. & JACOB, T. A. ( 1983). Ivermectin: a potent new antiparasitic agent. Science 221, 823828.CrossRefGoogle Scholar
CASCIO, M. ( 2004). Structure and function of the glycine receptor and related nicotinicoid receptors. Journal of Biological Chemistry 279, 1938319386.CrossRefGoogle Scholar
CHEESEMAN, C. L., DELANY, N. S., WOODS, D. J. & WOLSTENHOLME, A. J. ( 2001). High-affinity ivermectin binding to recombinant subunits of the Haemonchus contortus glutamate-gated chloride channel. Molecular and Biochemical Parasitology 114, 161168.CrossRefGoogle Scholar
CULLY, D. F., VASSILATIS, D. K., LIU, K. K., PARESS, P., VAN DER PLOEG, L. H. T., SCHAEFFER, J. M. & ARENA, J. P. ( 1994). Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans. Nature, London 371, 707711.CrossRefGoogle Scholar
CULLY, D. F., WILKINSON, H. & VASSILATIS, D. K. ( 1996). Molecular biology and electrophysiology of glutamate-gated chloride channels of invertebrates. Parasitology 113, S191S200.Google Scholar
DELANY, N. S., LAUGHTON, D. L. & WOLSTENHOLME, A. J. ( 1998). Cloning and localisation of an avermectin receptor-related subunit from Haemonchus contortus. Molecular and Biochemical Parasitology 97, 177187.CrossRefGoogle Scholar
DENT, J. A., DAVIS, M. W. & AVERY, L. ( 1997). avr-15 encodes a chloride channel subunit that mediates inhibitory glutamatergic neurotransmission and ivermectin sensitivity in Caenorhabditis elegans. EMBO Journal 16, 58675879.CrossRefGoogle Scholar
DENT, J. A., SMITH, M. M., VASSILATIS, D. K. & AVERY, L. ( 2000). The genetics of avermectin resistance in Caenorhabditis elegans. Proceedings of the National Academy of Sciences, USA 97, 26742679.CrossRefGoogle Scholar
DROGEMULLER, M., SCHNIEDER, T. & VON SAMSON-HIMMELSTJERNA, G. ( 2004). Evidence of P-glycoprotein sequence diversity in cyathostomins. Journal of Parasitology 90, 9981003.CrossRefGoogle Scholar
DUKE, B. O. L., ZEAFLORES, G., CASTRO, J., CUPP, E. W. & MUNOZ, B. ( 1992). Effects of 3-month doses of ivermectin on adult Onchocerca volvulus. American Journal of Tropical Medicine and Hygiene 46, 189194.CrossRefGoogle Scholar
ETTER, A., CULLY, D. F., SCHAEFFER, J. M., LIU, K. K. & ARENA, J. P. ( 1996). An amino acid substitution in the pore region of a glutamate gated chloride channel enables the coupling of ligand binding to channel gating. Journal of Biological Chemistry 271, 1603516039.CrossRefGoogle Scholar
FAMILTON, A. S., MASON, P. & COLES, G. C. ( 2001). Anthelmintic resistant Cooperia in cattle. Veterinary Record 149, 719720.Google Scholar
FENG, X.-P., HAYASHI, P., BEECH, R. N. & PRICHARD, R. K. ( 2002). Study of the nematode putative GABA type-A receptor subunits: evidence for modulation by ivermectin. Journal of Neurochemistry 83, 870878.CrossRefGoogle Scholar
FIRE, A., HARRISON, S. W. & DIXON, D. ( 1990). A modular set of LacZ fusion vectors for studying gene expression in Caenorhabditis elegans. Gene 93, 189198.CrossRefGoogle Scholar
FORRESTER, S. G., BEECH, R. N. & PRICHARD, R. K. ( 2004). Agonist enhancement of macrocyclic lactone activity at a glutamate-gated chloride channel subunit from Haemonchus contortus. Biochemical Pharmacology 67, 10191024.CrossRefGoogle Scholar
FORRESTER, S. G., HAMDAN, F. F., PRICHARD, R. K. & BEECH, R. N. ( 1999). Cloning, sequencing, and developmental expression levels of a novel glutamate-gated chloride channel homologue in the parasitic nematode Haemonchus contortus. Biochemical and Biophysical Research Communications 254, 529534.CrossRefGoogle Scholar
FORRESTER, S. G., PRICHARD, R. K. & BEECH, R. N. ( 2002). A glutamate-gated chloride channel subunit from Haemonchus contortus: Expression in a mammalian cell line, ligand binding, and modulation of anthelmintic binding by glutamate. Biochemical Pharmacology 63, 10611068.CrossRefGoogle Scholar
FORRESTER, S. G., PRICHARD, R. K., DENT, J. A. & BEECH, R. N. ( 2003). Haemonchus contortus: HcGluCla expressed in Xenopus oocytes forms a glutamate-gated ion channel that is activated by ibotenate and the antiparasitic drug ivermectin. Molecular and Biochemical Parasitology 129, 115121.CrossRefGoogle Scholar
FREEMAN, A. S., NGHIEM, C., LI, J., ASHTON, F. T., GUERRERO, J., SHOOP, W. L. & SCHAD, G. A. ( 2003). Amphidial structure of ivermectin-resistant and susceptible laboratory and field strains of Haemonchus contortus. Veterinary Parasitology 110, 217226.CrossRefGoogle Scholar
GEARY, T. G., SIMS, S. M., THOMAS, E. M., VANOVER, L., DAVIS, J. P., WINTEROWD, C. A., KLEIN, R., NORMAN, H. O. & THOMPSON, J. P. ( 1993). Haemonchus contortus: Ivermectin-induced paralysis of the pharynx. Experimental Parasitology 77, 8896.CrossRefGoogle Scholar
GILL, J. H., REDWIN, J. M., VAN WYK, J. A. & LACEY, E. ( 1995). Avermectin inhibition of larval development in Haemonchus contortus – Effects of ivermectin resistance. International Journal for Parasitology 25, 463470.CrossRefGoogle Scholar
GRAHAM, D., PFEIFFER, F. & BETZ, H. ( 1982). Avermectin B1a inhibits the binding of strychnine to the glycine receptor of rat spinal-cord. Neuroscience Letters 29, 173176.CrossRefGoogle Scholar
HEJMADI, M. V., JAGANNATHAN, S., DELANY, N. S., COLES, G. C. & WOLSTENHOLME, A. J. ( 2000). L-glutamate binding sites of parasitic nematodes: an association with ivermectin resistance? Parasitology 120, 535545.Google Scholar
HOLDEN-DYE, L., HEWITT, G. M., WANN, K. T., KROGSGAARDLARSEN, P. & WALKER, R. J. ( 1988). Studies involving avermectin and the 4-aminobutyric acid (GABA) receptor of Ascaris suum muscle. Pesticide Science 24, 231245.CrossRefGoogle Scholar
HOLDEN-DYE, L. & WALKER, R. J. ( 1990). Avermectin and avermectin derivatives are antagonists at the 4-aminobutyric acid (GABA) receptor on the somatic muscle cells of Ascaris – Is this the site of anthelmintic action? Parasitology 101, 265271.Google Scholar
HOROSZOK, L., RAYMOND, V., SATTELLE, D. B. & WOLSTENHOLME, A. J. ( 2001). GLC-3: a novel fipronil and BIDN-sensitive, but picrotoxinin-insensitive, L-glutamate-gated chloride channel subunit from Caenorhabditis elegans. British Journal of Pharmacology 132, 12471254.CrossRefGoogle Scholar
JACKSON, F. & COOP, R. L. ( 2000). The development of anthelmintic resistance in sheep nematodes. Parasitology 120, S95S107.CrossRefGoogle Scholar
JAGANNATHAN, S., LAUGHTON, D. L., CRITTEN, C. L., SKINNER, T. M., HOROSZOK, L. & WOLSTENHOLME, A. J. ( 1999). Ligand-gated chloride channel subunits encoded by the Haemonchus contortus and Ascaris suum orthologues of the Caenorhabditis elegans gbr-2 (avr-14) gene. Molecular and Biochemical Parasitology 103, 129140.CrossRefGoogle Scholar
KAPLAN, R. M. ( 2004). Drug resistance in nematodes of veterinary importance: a status report. Trends in Parasitology 20, 477481.CrossRefGoogle Scholar
KASS, I. S., STRETTON, A. O. W. & WANG, C. C. ( 1984). The effects of avermectin and drugs related to acetylcholine and 4-aminobutyric acid on neurotransmitters in Ascaris suum. Molecular and Biochemical Parasitology 13, 213225.CrossRefGoogle Scholar
KASS, I. S., WANG, C. C., WALROW, J. P. & STRETTON, A. O. W. ( 1980). Avermectin b1A, a paralysing anthelmintic that affects interneurons and inhibitory motorneurons in Ascaris. Proceedings of the National Academy of Sciences, USA 77, 62116215.CrossRefGoogle Scholar
KEANE, J. & AVERY, L. ( 2003). Mechanosensory inputs influence Caenorhabditis elegans pharyngeal activity via ivermectin sensitivity genes. Genetics 164, 153162.Google Scholar
KERBOEUF, D., BLACKHALL, W. J., KAMINSKY, R. & VON samson-himmelstjerna, G. ( 2003). P-glycoprotein in helminths: function and perspectives for anthelmintic treatment and reversal of resistance. International Journal of Antimicrobial Agents 22, 322346.CrossRefGoogle Scholar
KLAGER, S., WHITWORTH, J. A. G., POST, R. J., CHAVASSE, D. C. & DOWNHAM M. D. ( 1993). How long do the effects of ivermectin on adult Onchocerca volvulus persist? Tropical Medicine and Parasitology 44, 305310.Google Scholar
KRAUSE, R. M., BUISSON, B., BERTRAND, S., CORRINGER, P. J., GALZI, J. L., CHANGEUX, J. P. & BERTRAND, D. ( 1998). Ivermectin: a positive allosteric effector of the α7 neuronal nicotinic acetylcholine receptor. Molecular Pharmacology 53, 283294.CrossRefGoogle Scholar
LAUGHTON, D. L., LUNT, G. G. & WOLSTENHOLME, A. J. ( 1997 a). Reporter gene constructs suggest the Caenorhabditis elegans avermectin receptor β-subunit is expressed solely in the pharynx. Journal of Experimental Biology 200, 15091514.Google Scholar
LAUGHTON, D. L., LUNT, G. G. & WOLSTENHOLME, A. J. ( 1997 b). Alternative splicing of a Caenorhabditis elegans gene produces two novel inhibitory amino acid receptor subunits with identical ligand-binding domains but different ion channels. Gene 201, 119125.Google Scholar
LEE, R. Y. N., SAWIN, E. R., CHALFIE, M., HORVITZ, H. R. & AVERY, L. ( 1999). EAT-4, a homolog of a mammalian sodium-dependent inorganic phosphate cotransporter, is necessary for glutamatergic neurotransmission in Caenorhabditis elegans. Journal of Neuroscience 19, 159167.Google Scholar
LOK, J. B., KNIGHT, D. H., SELAVKA, C. M., EYNARD, J., ZHANG, Y. & BERGMAN, R. N. ( 1995). Studies of reproductive competence in male Dirofilaria immitis treated with milbemycin oxime. Tropical Medicine and Parasitology 46, 235240.Google Scholar
LOVERIDGE, B., McARTHUR, M., McKENNA, P. & MARIADASS, B. ( 2003). Probable multigeneric resistance to macrocyclic lactone anthelmintics in cattle in New Zealand. New Zealand Veterinary Journal 51, 139141.CrossRefGoogle Scholar
MARTIN, R. J. ( 1996). An electrophysiological preparation of Ascaris suum pharyngeal muscle reveals a glutamate-gated chloride channel sensitive to the avermectin analogue, milbemycin D. Parasitology 112, 247252.CrossRefGoogle Scholar
MARTIN, R. J. & PENNINGTON, A. J. ( 1988). Effect of dihyroavermectin-b1a on Cl single channel currents in Ascaris. Pesticide Science 24, 9091.Google Scholar
MARTIN, R. J. & PENNINGTON, A. J. ( 1989). A patch-clamp study of effects of dihydroavermectin on Ascaris muscle. British Journal of Pharmacology 98, 747756.CrossRefGoogle Scholar
McINTIRE, S. L., JORGENSEN, E. M., KAPLAN, J. & HORVITZ, H. R. ( 1993). The GABAergic nervous system of Caenorhabditis elegans. Nature, London 364, 337341.CrossRefGoogle Scholar
MEALEY, K. L., BENTJEN, S. A., GAY, J. M. & CANTOR, G. H. ( 2001). Ivermectin sensitivity in collies is associated with a deletion mutation of the mdr1 gene. Pharmacogenetics 11, 727733.CrossRefGoogle Scholar
MELLEM, J. E., BROCKIE, P. J., ZHENG, Y., MADSEN, D. M. & MARICQ, A. V. ( 2002). Decoding of polymodal sensory stimuli by postsynaptic glutamate receptors in C. elegans. Neuron 36, 933944.CrossRefGoogle Scholar
MES, T. H. M. ( 2004). Purifying selection and demographic expansion affect sequence diversity of the ligand-binding domain of a glutamate-gated chloride channel gene of Haemonchus placei. Journal of Molecular Evolution 58, 466478.CrossRefGoogle Scholar
NJUE, A. I., HAYASHI, J., KINNE, J., FENG, X.-P. & PRICHARD, R. K. ( 2004). Mutations in the extracellular domain of glutamate-gated chloride channel α3 and β subunits from ivermectin-resistant Cooperia oncophora affect agonist sensitivity. Journal of Neurochemistry 89, 11371147.CrossRefGoogle Scholar
NJUE, A. I. & PRICHARD, R. K. ( 2004). Genetic variability of glutamate-gated chloride channel genes in ivermectin-sensitive and -resistant strains of Cooperia oncophora. Parasitology 129, 741751.CrossRefGoogle Scholar
NOBMANN, S., BAUER, B. & FRICKER, G. ( 2001). Ivermectin excretion by isolated functionally intact brain endothelial capillaries. British Journal of Pharmacology 132, 722728.CrossRefGoogle Scholar
OLSEN, R. & TOBIN, A. ( 1990). Molecular biology of GABAA receptors. FASEB Journal 4, 14691480.CrossRefGoogle Scholar
OMURA, S. & CRUMP, A. ( 2004). The life and times of ivermectin – A success story. Nature Reviews Microbiology 2, 984989.CrossRefGoogle Scholar
PAIEMENT, J.-P., LEGER, C., RIBEIRO, P. & PRICHARD, R. K. ( 1999). Haemonchus contortus: effects of glutamate, ivermectin, and moxidectin on inulin uptake activity in unselected and ivermectin-selected adults. Experimental Parasitology 92, 193198.CrossRefGoogle Scholar
PEMBERTON, D. J., FRANKS, C. J., WALKER, R. J. & HOLDEN-DYE, L. ( 2001). Characterization of glutamate-gated chloride channels in the pharynx of wild-type and mutant Caenorhabditis elegans delineates the role of the subunit GluCl-alpha 2 in the function of the native receptor. Molecular Pharmacology 59, 10371043.CrossRefGoogle Scholar
PERRY, R. N. ( 2001). Analysis of the sensory responses of parasitic nematodes using electrophysiology. International Journal for Parasitology 31, 909918.CrossRefGoogle Scholar
PETERSEN, M. B., VARADY, M., BJORN, H. & NANSEN, P. ( 1996). Efficacies of different doses of ivermectin against male, female and L4 Oesophagostomum dentatum in pigs. Veterinary Parasitology 65, 5563.CrossRefGoogle Scholar
PONG, S. S. & WANG, C. C. ( 1982). Avermectin-B1a modulation of gamma-aminobutyric acid receptors in rat-brain membranes. Journal of Neurochemistry 38, 375379.CrossRefGoogle Scholar
PORTILLO, V., JAGANNATHAN, S. & WOLSTENHOLME, A. J. ( 2003). Distribution of glutamate-gated chloride channel subunits in the parasitic nematode Haemonchus contortus. Journal of Comparative Neurology 462, 213222.CrossRefGoogle Scholar
RAIZEN, D. M. & AVERY, L. ( 1994). Electrical activity and behaviour in the pharynx of Caenorhabditis elegans. Neuron 12, 483495.CrossRefGoogle Scholar
ROLFE, R. N., BARRETT, J. & PERRY, R. N. ( 2001). Electrophysiological analysis of responses of adult females of Brugia pahangi to some chemicals. Parasitology 122, 347357.CrossRefGoogle Scholar
ROULET, A., PUEL, O., GESTA, S., LEPAGE, J. F., DRAG, M., SOLL, M., ALVINERIE, M. & PINEAU, T. ( 2003). MDR1-deficient genotype in Collie dogs hypersensitive to the P-glycoprotein substrate ivermectin. European Journal of Pharmacology 460, 8591.CrossRefGoogle Scholar
SANGSTER, N. C., BANNAN, S. C., WEISS, A. S., NULF, S. C., KLEIN, R. D. & GEARY, T. G. ( 1999). Haemonchus contortus: Sequence heterogeneity of internucleotide binding domains from P-glycoproteins and an association with avermectin/milbemycin resistance. Experimental Parasitology 91, 250257.CrossRefGoogle Scholar
SHAN, Q., HADDRILL, J. L. & LYNCH, J. W. ( 2001). Ivermectin, an unconventional agonist of the glycine receptor chloride channel. Journal of Biological Chemistry 276, 1255612564.CrossRefGoogle Scholar
SHERIFF, J. C., KOTZE, A. C., SANGSTER, N. C. & MARTIN, R. J. ( 2002). Effects of macrocyclic lactone anthelmintics on feeding and pharyngeal pumping in Trichostrongylus colubriformis in vitro. Parasitology 125, 477484.CrossRefGoogle Scholar
SUPAVILAI, P. & KAROBATH, M. ( 1981). In vitro modulation by avermectin-B1a of the GABA-benzodiazepine receptor complex of rat cerebellum. Journal of Neurochemistry 36, 798803.CrossRefGoogle Scholar
VASSILATIS, D. K., ARENA, J. P., PLASTERK, R. H. A., WILKINSON, H., SCHAEFFER, J. M., CULLY, D. F. & VAN der ploeg, L. H. T. ( 1997 a). Genetic and biochemical evidence for a novel avermectin sensitive chloride channel in C. elegans: isolation and characterisation. Journal of Biological Chemistry 272, 3316733174.Google Scholar
VASSILATIS, D. K., ELLISTON, K., PARESS, P. S., HAMELIN, M., ARENA, J. P., SCHAEFFER, J. M., VAN der ploeg, L. H. T. & CULLY, D. F. ( 1997 b). Evolutionary relationship of the ligand-gated ion channels and the avermectin sensitive, glutamate-gated chloride channels. Journal of Molecular Evolution 44, 501508.Google Scholar
VERCRUYSSE, J. & REW, R. E. ( 2002). Macrocyclic Lactones in Antiparasitic Therapy. CABI Publishing, Wallingford, UK.CrossRef
WHITE, J. G., SOUTHGATE, E., THOMPSON, J. N. & BRENNER, S. ( 1986). The structure of the nervous system of Caenorhabditis elegans. Philosophical Transactions of the Royal Society of London Series B 314, 1340.CrossRefGoogle Scholar
WOLSTENHOLME, A. J., FAIRWEATHER, I., PRICHARD, R. K., VON SAMSON-HIMMELSTJERNA, G. & SANGSTER, N. C. ( 2004). Drug resistance in veterinary helminths. Trends in Parasitology 20, 469476.CrossRefGoogle Scholar
YATES, D. M., PORTILLO, V. & WOLSTENHOLME, A. J. ( 2003). The avermectin receptors of Haemonchus contortus and Caenorhabditis elegans. International Journal for Parasitology 33, 11831193.CrossRefGoogle Scholar
YATES, D. M. & WOLSTENHOLME, A. J. ( 2004). An ivermectin-sensitive glutamate-gated chloride channel subunit from Dirofilaria immitis. International Journal for Parasitology 34, 10651071.CrossRefGoogle Scholar
ZHENG, Y., BROCKIE, P. J., MELLEM, J. E., MADSEN, D. M. & MARICQ, A. V. ( 1999). Neuronal control of locomotion in C. elegans is modified by a dominant mutation in the GLR-1 ionotropic glutamate receptor. Neuron 24, 347361.Google Scholar