Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-10T04:26:10.889Z Has data issue: false hasContentIssue false

Generation and characterization of U937-TR: a platform cell line for inducible gene expression in human macrophages

Published online by Cambridge University Press:  27 July 2020

Cristian Camilo Galindo*
Affiliation:
Universidad Nacional de Colombia, Sede Bogotá–Facultad de Medicina, Grupo de investigación: Biología Celular y Molecular de Parásitos y Hospederos, Laboratorio de Parasitología, Carrera 30 No. 45-03, Edificio 471, Oficina: 318, Piso 3, Bogotá, Código111321, Colombia
Carlos Arturo Clavijo-Ramírez
Affiliation:
Departamento de Biología, Universidad Nacional de Colombia, Sede Bogotá–Facultad de Ciencias, Grupo de investigación: Biología Celular y Molecular de Parásitos y Hospederos, Carrera 30 No. 45-03, Edificio 421, Oficina: 211, Piso 2, Bogotá, Código111321, Colombia
*
Author for correspondence: Cristian Camilo Galindo, E-mail: caclavijor@unal.edu.co

Abstract

Monocytes and macrophages are involved in a wide range of biological processes and parasitic diseases. The characterization of the molecular mechanisms governing such processes usually requires precise control of the expression of genes of interest. We implemented a tetracycline-controlled gene expression system in the U937 cell line, one of the most used in vitro models for the research of human monocytes and macrophages. Here we characterized U937-derived cell lines in terms of phenotypic (morphology and marker expression) and functional (capacity for phagocytosis and for Leishmania parasite hosting) changes induced by phorbol-12-myristate-13-acetate (PMA). Finally, we provide evidence of tetracycline-inducible and reversible Lamin-A gene silencing of the PMA-differentiated U937-derived cells.

Type
Research Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boer, J, Bonten-Surtel, J and Grosveld, G (1998) Overexpression of the nucleoporin CAN/NUP214 induces growth arrest, nucleocytoplasmic transport defects, and apoptosis. Molecular Cell Biology 18, 12361247.CrossRefGoogle ScholarPubMed
Camilli, G, Cassotta, A, Battella, S, Palmieri, G, Santoni, A, Paladini, F, Fiorillo, MT and Sorrentino, R (2016) Regulation and trafficking of the HLA-E molecules during monocyte-macrophage differentiation. Journal of Leukocyte Biology 99, 121130.Google ScholarPubMed
Carpenter, AE, Jones, TR, Lamprecht, MR, Clarke, C, Kang, IH, Friman, O, Guertin, DA, Chang, JH, Lindquist, RA, Moffat, J, Golland, P and Sabatini, DM (2006) Cellprofiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biology 7, R100.CrossRefGoogle ScholarPubMed
Chatterjee, N, Das, S, Bose, D, Banerjee, S, Jha, T and Das Saha, K (2015) Lipid from infective L. donovani regulates acute myeloid cell growth Via Mitochondria dependent MAPK pathway. PLoS ONE 10, e0120509.CrossRefGoogle ScholarPubMed
Cianciulli, A, Porro, C, Calvello, R, Trotta, T and Panaro, MA (2018) Resistance to apoptosis in Leishmania infantum-infected human macrophages: a critical role for anti-apoptotic Bcl-2 protein and cellular IAP1/2. Clinical and Experimental Medicine 18, 251261.CrossRefGoogle ScholarPubMed
Clavijo, C, Chen, J-L, Kim, K-J, Reyland, ME and Ann, DK (2007) Protein kinase Cδ-dependent and -independent signaling in genotoxic response to treatment of desferroxamine, a hypoxia-mimetic agent. American Journal of Physiology – Cell Physiology 292, C2150C2160.CrossRefGoogle ScholarPubMed
Dai, X, Chen, X, Fang, Q, Li, J and Bai, Z (2018) Inducible CRISPR genome-editing tool: classifications and future trends. Critical Reviews in Biotechnology 38, 573586.Google ScholarPubMed
Das, AT, Tenenbaum, L and Berkhout, B (2016) Tet-on systems for doxycycline-inducible gene expression. Current. Gene Therapy 16, 156167.CrossRefGoogle ScholarPubMed
Galluzzi, L, Diotallevi, A, De Santi, M, Ceccarelli, M, Vitale, F, Brandi, G and Magnani, M (2016) Leishmania infantum induces mild unfolded protein response in infected macrophages. PLoS ONE 11, e0168339.CrossRefGoogle ScholarPubMed
Gmiterek, A, Klopot, A, Wojtowicz, H, Trindade, SC, Olczak, M and Olczak, T (2016) Immune response of macrophages induced by Porphyromonas gingivalis requires HmuY protein. Immunobiology 221, 13821394.CrossRefGoogle ScholarPubMed
Hackl, H, Rommer, A, Konrad, TA, Nassimbeni, C and Wieser, R (2010) Tetracycline regulator expression alters the transcriptional program of mammalian cells. PLoS ONE 5, e13013.CrossRefGoogle ScholarPubMed
Hakansson, P, Lassen, C, Olofsson, T, Baldetorp, B, Karlsson, A, Gullberg, U and Fioretos, T (2004) Establishment and phenotypic characterization of human U937 cells with inducible P210 BCR/ABL expression reveals upregulation of CEACAM1 (CD66a). Leukemia 18, 538547.CrossRefGoogle Scholar
Invitrogen (2005) BLOCK-iTTM Pol II miR Validated miRNA Control Vectors. User Manual 2010.Google Scholar
Invitrogen (2009 a) ViraPower HiPerform T-REx Gateway Expression System. User Manual 2010.Google Scholar
Invitrogen (2009 b) Gateway Technology with Clonase II. User Manual 2010.Google Scholar
Iqbal, AJ, McNeill, E, Kapellos, TS, Regan-Komito, D, Norman, S, Burd, S, Smart, N, Machemer, DEW, Stylianou, E, McShane, H, Channon, KM, Chawla, A and Greaves, DR (2014) Human CD68 promoter GFP transgenic mice allow analysis of monocyte to macrophage differentiation in vivo. Blood 124, e33e44.CrossRefGoogle ScholarPubMed
Kawagoe, H, Potter, M, Ellis, J and Grosveld, GC (2004) TEL2, An ETS factor expressed in human leukemia, regulates monocytic differentiation of U937 cells and blocks the inhibitory effect of TEL1 on ras-induced cellular transformation. Cancer Research 64, 60916100.CrossRefGoogle ScholarPubMed
Kim, J and Heo, WD (2018) Synergistic ensemble of optogenetic actuators and dynamic indicators in cell biology. Molecules and Cells 41, 809817.Google ScholarPubMed
Lishko, VK, Yakubenko, VP, Ugarova, TP and Podolnikova, NP (2018) Leukocyte integrin Mac-1 (CD11b/CD18, alphaMbeta2, CR3) acts as a functional receptor for platelet factor 4. Journal of Biological Chemistry 293, 68696882.CrossRefGoogle ScholarPubMed
Mandel, K, Otte, A and Hass, R (2012) Involvement of CD11b integrin in the alteration of metabolic factors after phorbol ester stimulation of human myeloid leukemia cells. Cell Communication and Signaling 10, 13.CrossRefGoogle ScholarPubMed
Ngan, ESW, Schillinger, K, DeMayo, F and Tsai, SY (2002) The mifepristone-inducible gene regulatory system in mouse models of disease and gene therapy. Seminars in Cell and Developmental Biology 13, 143149.CrossRefGoogle ScholarPubMed
Rahmani, M, Aust, MM, Attkisson, E, Williams, DCJ, Ferreira-Gonzalez, A and Grant, S (2013) Dual inhibition of Bcl-2 and Bcl-xL strikingly enhances PI3K inhibition-induced apoptosis in human myeloid leukemia cells through a GSK3- and Bim-dependent mechanism. Cancer Research 73, 13401351.10.1158/0008-5472.CAN-12-1365CrossRefGoogle ScholarPubMed
Riddy, DM, Goy, E, Delerive, P, Summers, RJ, Sexton, PM and Langmead, CJ (2018) Comparative genotypic and phenotypic analysis of human peripheral blood monocytes and surrogate monocyte-like cell lines commonly used in metabolic disease research. PLoS ONE 13, e0197177.Google ScholarPubMed
Song, M-G, Ryoo, I-G, Choi, H-Y, Choi, B-H, Kim, S-T, Heo, T-H, Lee, JY, Park, P-H and Kwak, M-K (2015) NRF2 Signaling negatively regulates phorbol-12-myristate-13-acetate (PMA)-induced differentiation of human monocytic U937 cells into pro-inflammatory macrophages. PLoS ONE 10, e0134235.10.1371/journal.pone.0134235CrossRefGoogle ScholarPubMed
Sundström, C and Nilsson, K (1976) Establishment and characterization of a human histiocytic lymphoma cell line (U-937). International Journal of Cancer 17, 565577.CrossRefGoogle Scholar
Suzuki, M, Toyoda, N, Shimojou, M and Takagi, S (2013) Infrared laser-induced gene expression in targeted single cells of Caenorhabditis elegans. Development Growth and Differentiation 55, 454461.10.1111/dgd.12061CrossRefGoogle ScholarPubMed
Taniguchi, K, Hikiji, H, Okinaga, T, Hashidate-Yoshida, T, Shindou, H, Ariyoshi, W, Shimizu, T, Tominaga, K and Nishihara, T (2015) Essential role of lysophosphatidylcholine acyltransferase 3 in the induction of macrophage polarization in PMA-treated U937 cells. Journal of Cellular Biochemistry 116, 28402848.CrossRefGoogle ScholarPubMed
Ting, DT, Kyba, M and Daley, GQ (2005) Inducible transgene expression in mouse stem cells. Methods in Molecular Medicine 105, 2346.Google ScholarPubMed
Weber, W and Fussenegger, M (2006) Pharmacologic transgene control systems for gene therapy. The Journal of Gene Medicine 8, 535556.CrossRefGoogle ScholarPubMed
Weber, W and Fussenegger, M (2011) Molecular diversity – the toolbox for synthetic gene switches and networks. Current Opinion in Chemical Biology 15, 414420.CrossRefGoogle ScholarPubMed
Wu, ZJ, Zhao, X, Banaszak, LG, Gutierrez-Rodrigues, F, Keyvanfar, K, Gao, SG, Quinones Raffo, D, Kajigaya, S and Young, NS (2018) CRISPR/Cas9-mediated ASXL1 mutations in U937 cells disrupt myeloid differentiation. International Journal of Oncology 52, 12091223.Google ScholarPubMed
Yang, L, Dai, F, Tang, L, Le, Y and Yao, W (2017) Macrophage differentiation induced by PMA is mediated by activation of RhoA/ROCK signaling. The Journal of Toxicological Sciences 42, 763771.CrossRefGoogle ScholarPubMed
Zhang, W, Zhang, W, Zhang, P, Cao, X, He, A, Chen, Y and Gu, L (2013) The expression and functional characterization associated with cell apoptosis and proteomic analysis of the novel gene MLAA-34 in U937 cells. Oncology Reports 29, 491506.CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Camilo Galindo and Arturo Clavijo-Ramírez supplementary material

Camilo Galindo and Arturo Clavijo-Ramírez supplementary material

Download Camilo Galindo and Arturo Clavijo-Ramírez supplementary material(PDF)
PDF 544.7 KB