Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T21:04:19.505Z Has data issue: false hasContentIssue false

Gastrointestinal hormones: environmental cues for Fasciola hepatica?

Published online by Cambridge University Press:  06 April 2009

M. V. K. Sukhdeo
Affiliation:
Department of Zoology, University of Toronto, 25 Harbord St, Toronto, Ontario, Canada M5S 1A1
S. C. Sukhdeo
Affiliation:
Department of Zoology, University of Toronto, 25 Harbord St, Toronto, Ontario, Canada M5S 1A1

Summary

The effects of pharmacological concentrations of several gastrointestinal hormones on the rate of sucker activity and the frequency and the amplitude of spontaneous longitudinal muscle contractions have been examined in adult Fasciola hepatica. Caerulein and serum decrease the rate of oral sucker activity; motilin decreases and CCK–PZ increases ventral sucker activity when compared to controls. Caerulein, serum and motilin significantly inhibit the frequency of contractions while bile, caerulein and motilin decrease the amplitude of contractions. These results suggest that F. hepatica can recognize and respond to certain gastrointestinal hormones and there may be adaptive value in these behavioural responses.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bennett, A. (1983). Gastrointestinal nerves, hormones and autacoids in relation to human gastrointestinal motility. In Mechanisms of Gastrointestinal Motility and Secretion (ed. Bennett, A. and Velo, G.), pp. 87108. New York: Plenum Press.Google Scholar
Bettendorf, H. (1897). Uber Muskulatur und Sinneszellen der Trematoden. Zoologische Jahrbücher (Anatomie) 10, 307–58.Google Scholar
Christofides, N. D. & Bloom, S. R. (1981). Motilin. In Gut Hormones, 2nd edn (ed. Bloom, S. R. and Polak, J. M.), pp. 273–9. Edinburgh: Churchill Livingstone.Google Scholar
Dawes, B. (1963). Hyperplasia of the bile duct in fascioliasis and its relation to the problem of nutrition in the liver fluke Fasciola hepatica L. Parasitology 53, 123–33.CrossRefGoogle Scholar
Doyle, H. R., Lluis, F. & Rayford, P. L. (1987). Secretin. In Gastrointestinal Endocrinology (ed. Thompson, J. C., Greely, G. H., Rayford, P. L., and Townsend, C. M.), pp. 223–33. New York: McGraw-Hill Book Co.Google Scholar
Greenberg, M. J. & Price, D. A. (1983). Invertebrate neuropeptides: native and naturalized. Annual Review of Physiology 34, 271–88.CrossRefGoogle Scholar
Gutteridge, W. E. (1982). Chemotherapy. In Modern Parasitology (ed. Cox, F. E. G.), pp. 287318. Oxford: Blackwell Scientific Publications.Google Scholar
Halton, D. W. (1967). Observations on the nutrition of digenetic trematodes. Parasitology 57, 639–60.CrossRefGoogle ScholarPubMed
Hogan, W. J., Dodds, W. J. & Geenen, J. E. (1983). The biliary tract. In A Guide to Gastrointestinal Motility (ed. Christensen, J. and Wingate, D. L.), pp. 157–96. Bristol: Wright PSG.Google Scholar
Kandel, E. R. (1976). Cellular Basis of Behaviour. San Francisco: W. H. Feeman and Co.Google Scholar
Marx, M., Gomez, G., Lonovics, J. & Thompson, J. C. (1987). Cholecystokinin. In Gastrointestinal Endocrinology (ed. Thompson, J. C., Geenen, G. H., Rayford, P. L. and Townsend, C. M.), pp. 213–22. New York: McGraw-Hill Book Co.Google Scholar
Mutt, V. (1979). Some correlations between the structures and functions of gastrointestinal hormones. In Gut Peptides (ed. Miyoshi, A.), pp. 313. Tokyo: Elsevier North-Holland Biomedical Press.Google Scholar
Pearson, I. G. (1963). Use of the chromium radioisotope 51Cr to estimate blood loss through ingestion by Fasciola hepatica. Experimental Parasitology 13, 186–93.CrossRefGoogle ScholarPubMed
Shepherd, G. M. (1983). Neurobiology. New York: Oxford University Press.Google Scholar
Sommer, F. (1880). Die Anatomie des Lebergels Distomum hepaticum L. Zeitschrift für Wissenschaftliche Zoologie 34, 539640.Google Scholar
Stephenson, W. (1947). Physiological and histochemical observations on the adult liver fluke Fasciola hepatica L. II. Feeding. Parasitology 38, 123–7.CrossRefGoogle Scholar
Sukhdeo, M. V. K. & Mettrick, D. F. (1987). Parasite behaviour: understanding platyhelminth responses. Advances in Parasitology 26, 74144.Google ScholarPubMed
Sukhdeo, M. V. K., Sangster, N. C. & Mettrick, D. F. (1988 a). Permanent feeding sites of adult Fasciola hepatica in rabbits ? International Journal for Parasitology 18, 509–12.CrossRefGoogle ScholarPubMed
Sukhdeo, S. C., Sangster, N. C. & Mettrick, D. F. (1986). Effects of cholinergic drugs on longitudinal muscle contractions of Fasciola hepatica. Journal of Parasitology 72, 858–64.CrossRefGoogle ScholarPubMed
Sukhdeo, S. C., Sukhdeo, M. V. K. & Mettrick, D. F. (1988 b). Neurocytology of the cerebral ganglion of Fasciola hepatica (Platyhelminthes). Journal of Comparative Neurology (in the Press).CrossRefGoogle ScholarPubMed
Symonds, L. E. A. & Boray, J. C. (1968). The anaemia of acute and chronic ovine fascioliasis. Zeitschrift für Tropenmedizin und Parasitologie 19, 451–72.Google Scholar
Todd, J. R. & Ross, J. G. (1966). Origin of hemoglobin in the caecal contents of Fasciola hepatica. Experimental Parasitology 19, 151–4.CrossRefGoogle ScholarPubMed
Wood, J. R. & Jenkins, D. R. (1983). Gallbladder motility and its regulation. In Mechanisms of Gastrointestinal Motility and Secretion (ed. Bennett, A. and Velo, G.), pp. 159–76. New York: Plenum Press.Google Scholar